Low A, B – Unsaturated Carbonyl Compounds as a Food Risk Factor in Thermal Processing of Grapeseed Oil

C. JIANU, Ileana COCAN, Mihaela SARPE, T. TRASCĂ, Corina MITCĂ, Monica NEGREA, G. BUJANCĂ, I. JIANU

Universitatea de Stiinte Agricole si Medicină Veterinară a Banatului Timisoara, Facultatea de Tehnologia Produselor Agroalimentare
Calea Aradului, Nr. 119, Timisoara, calin.jianu@gmail.com

Abstract. Low α,β – unsaturated carbonyl compounds (LUCC) (2-propenal, crotonaldehyde) and other similar structures highly reactive organic chemicals is ubiquitously present in (cooked) foods and in the environment. Chemical reactions responsible for release of acrolein (ACR) include heat-induced dehydration of glycerol, retro-aldol cleavage of dehydrated carbohydrates, lipid peroxidation of polyunsaturated fatty acids, and Strecker degradation of methionine and threonine. Thermal processing (managing or aggressive non-monitored) of grapeseeds oil can become a food-risk factor.

Keywords: α, β-unsaturated carbonyl compounds, acrolein, crotonaldehyde, combustion of biodiesel, Maillard reactions, grapeseed oil.

INTRODUCTION: Maximum permissible concentration (MPC), is determined according to European norms of labor protection, at 0.5mg ACR/m3 air, and the average concentration at 0.3mg ACR/m3. In Rusia, MPC is set at 0.7mg ACR/m3 air, in Germany and SUA at 0.25mg ACR/m3 air.

RESULTS AND DISCUSSION: In paper we monitor the qualitative and quantitative colorimetric evolution of this risk factor in the gaseous phase [samples continuously harvested 0.5 mL/minute from evacuation devices in chips, fast-food produces, etc. manufacturing technologies) through absorption in benzidine solutions 1% in glacial acetic acid medium.

CONCLUSIONS: The proposed method for identifying trace amounts of LUCC as acrolein as a food chemical risk factor in thermal processing of grapeseed oil (conventional range) is reproductible (±1%), rapid and can be adapted a continuous control by flow various capacity (high average).

REFERENCES
