Extraction of Polyphenolic Compounds from Grape Pomace

Nadia PAUN, Violeta NICULESCU

National R&D Institute for Cryogenics and Isotopic Technologies – ICIT Rm. Valcea, 4th Uzinei Street, PO Raureni, Box 7, Zip Code 240050, Ramnicu Valcea, Romania; nh@icsi.ro

SUMMARY

Plant polyphenolic compounds have been extensively studied and their antioxidant activity has been identified in several agricultural by-products, such as grape pomace. Grape seed in pomace is a good source of pro-anthocyanidins. Beside the seeds, grape skins in pomace represent a potentially important global source of trans-resveratrol. Trans-resveratrol, as a biologically active compound is one of the secondary plant metabolites, (Balasundram et al., 2006).

Grape skins were used to determine the trans-resveratrol content of pomace. For this purpose, traditional liquid-solid extraction method and ultrasonic extraction method were selected (Cho et al., 2006). Solid liquid ratio (g/mL) was kept constant as 0.1 for both of the methods. In order to investigate the importance of selecting appropriate extraction solvents, pure ethanol, pure methanol, and their 20% aqueous forms were used in extraction experiments. In order to determine the effect of temperature on extraction yield of trans-resveratrol in solvent extraction method, 30 °C and 60 °C were chosen. In each one of the temperature conditions tested, trans-resveratrol content at certain times of extraction (15, 30, 60 minutes and 24 hours) was determined by HPLC-DAD. After applying extraction, crude extracts were centrifuged for 5 min at 3000 rpm. In case of the low concentration of trans-resveratrol in the extract, 1 mL of sample was concentrated to 0.1 mL with a vacuum concentrator at 40 °C for 6 hours. After removing solvent with rotary evaporation at 40 °C, crude dry extract was obtained with freeze drier, which was applied at -50 °C and 0.2 mbar.

Keywords: grape skins, trans-resveratrol, ultrasonic extraction

Acknowledgments. This study has been financed by the Romanian Ministry of Education and Research, National Authority for Scientific Research, 19N/2009 NUCLEU Program, under Project PN 09190103, „Theoretical and experimental research for realization of molecular solar concentrators with application in the systems of renewable energy conversion”.

REFERENCES