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Abstract. In this paper, several models of estimating soil erosion have been compared, with a special 

emphasis on pixel-based calculation of soil loss. The paper describes and analyzes the differences 

between USLE, RUSLE 3D and USPED models, with an accent on the formula proposed by Moţoc et 

al. (1975). The materials used in the modeling process were the digital elevation model (DEM) at a 

10m resolution, 1:10,000 soil maps created by OSPA Vaslui including the analytical data attached, 

ortophotoplans and LANDSAT images for C factor extraction. For each model, the necessary layers 

have been derived according to specifications provided by the original authors. Moreover, a review of 

the Romanian literature on the subject has been conducted. After calculating soil erosion according to 

each model, results were compared with the absolute values measured by various research centers and 

values obtained by other authors. It has been found that the values obtained are comparable with those 

of other authors, and even with those from runoff plots. The main conclusion of the paper is that the 

Romanian version of the USLE equation needs to be updated, and some factors such as rainfall 

erosivity and soil erodability re-evaluated. The use of such a version would make all the applications’ 

results comparable. 
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INTRODUCTION 

 

In 1978, Wischmeier and Smith developed one of the most important models for 

estimation of soil erosion: the universal soil loss equation (USLE). Because USLE is more 

suitable for estimating sheet erosion (FAO, 1996), the initial version was improved by 

numerous authors, resulting in several new models. We will describe only the Romanian 

version (ROMSEM, Moţoc et al., 1975), because first of all we wanted to relate to other 

studies conducted in our country and secondly because the main differences between the 

models result from the computation of the topographical factor (slope length and declivity). 

The description of the RUSLE3D and USPED models can be found in Mitasova et al. (1996), 

Mitas et al. (1998) and Mitas and Mitasova (1999), and also in Niculiţă (2011). 

In 1975, Moţoc et al. adapted the USLE equation to the conditions of our country, the 

formula being: 

E= K· L
m

 ·I
n
 ·S ·C ·Cs,  

Where E is the mean annual rate of effective erosion (t/ha/y);  

K= correction coefficient for rainfall erosivity;  

L and I slope length (m) and declivity (%);  

L
m

 – the influence of slope length, with m determined to be 0.3;  

I
n
= 1.36 + 0.97 i + 0,381 i

2
, where i is the mean slope declivity; 

S= correction coefficient for soil erodability; 

C= correction coefficient for crop effect;  

Cs= correction coefficient for the effect of erosion control measures. 

 The values of the K factor are extracted from a map of rainfall erosivity distribution 

published by Moţoc et al. (1975). A comparative study conducted by Stănescu et al. (1969) 
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revealed that rainfall erosivity value can be estimated with the help of simpler indicators than 

Wishmeier’s EI30 index. Their conclusion was that the indicator of rainfall erosivity that 

included the intensity on 15 minutes of the rain (Hi15) was an adequate indicator (correlations 

of 0.972-0.992 with erosion data from control plots). The index of rainfall erosivity is 

computed for each rainfall event and then by summing is obtained the monthly or seasonal 

value. The values of rainfall erosivity computed by the authors indicate deviations from the 

mean value of -47 up to +63. Data were considered valid for the entire area of influence 

established on arbitrary geometrical and mainly physico-geographical criteria. Another 

convention has been that of rainfall uniformity on the entire surface, while it is known that 

exceptional rainfalls usually cover reduced terrain surfaces. Thus from the beginning one can 

see that there are some problems regarding the values of the K factor: large standard 

deviations, arbitrary criteria in drawing the limits of different erosivity regions, and even 

improbable associations among different areas of Romania. 

In the papers published in Romania, the K rainfall erosivity factor has been with a 

very few exceptions (Mihăiescu et al., 2004; Patriche et al., 2006) derived from the indirect 

estimative models elaborated on the basis of statistical relations between erosivity and other 

parameters, mainly from the map of Moţoc et al. (1975) or from the ICPA indicator 99 

(1987). 

Stângă (2011), analyzing the different ways of obtaining rainfall erosivity values, 

argues for the need to review such indicators, especially in Romania. Referring to indicator 99 

from the ICPA methodology (1987), he points out situations that are hardly correct, such as 

similar values of the rainfall erosivity for plain units from the humid western part of the 

country, plain units from the much more arid south, as well as mountainous areas. Moreover, 

these indicators derived from climatic data have not been revised since their publication, and 

in this period of 25-35 years more data have been collected and better techniques of spatial 

modeling have been derived, which could clearly improve the results. 

In the original version, the S factor has values from 0.6 to 1.2, established based on 

erosion data from runoff plots with the help of infiltrometers. Moţoc et al. (1975) established 

six classes (describing soil erosion, cohesion and structural state), which were further 

developed to include in the description the soil types, according to texture, structure and 

erosion state. Soil erodibility can also be determined from nomograms or calculating relations 

(Stângă, 2004 inventoried and analyzed 10 such equations). In Romania, most of the authors 

have used the methodology elaborated by ICPA (1987) for deriving the factor values. 

Being an equation constructed for arable terrains, the original C factor has values of 

0.25-0.6 according to the different combinations of crops cultivated. Later (Moţoc et al. 1979, 

Moţoc and Sevastel, 2002) these values have been extended to include different types of land 

use categories. Also, the Cs factor, which takes into account the anti-erosion efficiency of the 

management system practiced, has values differentiated according to such systems (for 

example contour farming) and the terrain slope. So, for studies at larger scales, where aerial or 

satellite images are used to derive land use categories, Moţoc et al.’s equation does not 

specify values of the C indicator for all of these. Thus, several authors have used values from 

literature (eg. Lee and Lee, 2006) or derived from satellite imagery, through calculation 

relations, based on the normalized difference vegetation index (NDVI). 

Hickey (2000) mentions that there are problems with most of the methods currently 

available for the calculation of the topographical factor (LI), while Patriche et al. (2006) state 

that among all the factors slope length is probably the most difficult to compute. They present 

several such methods used for quantifying the L factor, most of which use slope length (slope 

segment) raised to an exponent that takes values between 0.2 and 0.6 (0.3 in the Romanian 

methodology). Garcia Rodriguez, and Gimenez Suarez (2010), Hickey (2000), Van Remotel 
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et al. (2001), among others debated this problem of deriving the LS factor. In time, the 

algorithms used to calculate slope length have been developed to include grid based methods 

(Hickey et al., 1994), unit stream power theory (Mitasova et al., 1996; Moore et al., 1993), 

contributing area (Desmet and Govers, 1996), some of them giving birth to models such as 

RUSLE3D or USPED. 

Patriche et al. (2006) have tested several methods of spatial expressions for the slope 

length factor: 

- using the pixels’ side as flow length; 

- buffers generated at successively greater distances starting from the main 

topographic ridges, followed by their interpolation to obtain a continuous 

representation of the flow length; 

- generation of a triangulated irregular network  between ridges and the main valleys 

axis and the network’s length sides values interpolation; 

- considering the flow length equal with the length of the 1
st
 order river segments.  

 They reached the conclusion that the fittest approach resides in the substitution of 

slope’s linear length with the upslope drainage specific area (As), that can be determined by 

multiplying flow accumulation, where a pixel value equals the number of the pixels drained 

from upslope, with the pixel’s side (Moore et al., 1993). In their study, the largest errors were 

generated by the use of pixels’ side length as flow length and the specific upslope drainage 

area. 

In the revised studies different approaches have been used for computing the 

topographical factor, beginning with classical determination of the slope length and angle on 

the DEM and ending with the formulas of Moore et al., 1993 (Arghiuş and Arghiuş, 2011; 

Mihăiescu et al., 2004), Mitasova et al., 1996 (Bilaşco et al., 2009; Filip S., 2009; Ştefănescu 

et al., 2011), Desmet and Govers, 1996 (Anghel et al., 2007; Anghel and Bilaşco, 2008; 

Anghel and Todică, 2008). 

One can see from the above mentioned that the application in GIS of the Romanian 

version of USLE raises some problems regarding the choice of indicators. More precisely, 

some factors involved in the equation have to be derived in different modes than those 

originally specified by the authors. Patriche et al. (2006) also mention that the factors 

intervening in the Romanian version of USLE (R, K, LS) differ substantially compared with 

the corresponding factors to be found in other USLE / RUSLE equations applied at the 

international level. Consequently, these factors cannot be used in combination. Thus, we can 

hardly speak of applications of the ROMSEM model on areas larger than parcels. 

 

 

MATERIALS AND METHODS 

 

The medium and lower Vasluieţ basin is located in the eastern part of Romania, in 

the Central Moldavian Tableland. Altitudes vary between 426.8 m and 79.6 m, the mean 

being of 188 m. Surface deposits are represented mainly by clays, sandy clays and sands, thus 

conditioning a dominance of the sculptural relief and an appreciable extension of surface 

erosion and landslides. 

Land use is dominated by arable terrains, which occupy 46%. The second category is 

that of grasslands, simple or mixed with brushes (26%). Along time, surfaces occupied by 

agricultural terrains have increased, but not always on the most favorable terrains, situation 

that led to an acceleration of degradation processes. 
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The soil cover includes chernozems (50.55% of the arable surface), but the erosion 

and slope processes have led to a large development of regosols (17.82%) and erodosols 

(6.40%). 

The study focused mainly on two erosion estimation models: USLE (adapted to the 

Romanian methodology) and RUSLE3D, each with two versions according to the choice of 

factors. In addition to these models, we also computed the USPED model for erosion / 

deposition of Mitasova and Mitas (1998), which predicts the spatial distribution of erosion 

and deposition rates for a steady state overland flow with uniform rainfall excess conditions 

for transport capacity limited case of erosion process. Because the USPED model does not 

predict erosion, but mainly the distribution of erosion/deposition areas, we combined it with a 

RUSLE version to eliminate from the calculation the deposition areas.  

For deriving the factors needed in computing the models, were used the topographic 

maps at scale 1:5000, aerial photography, satellite imagery (LANDSAT) and soil surveys 

studies (including soil maps) from OSPA Vaslui. We used digitized contours and elevation 

points to interpolate the DEM at a 10 meter resolution in respect of methodology proposed by 

Mitasova et al. (1996), using v.surf.rst module from GRASS  software and tension=default 

according to scale and smoothing=0.5 as parameters. The choice of applying smoothing was 

determined by the need to obtain, as much as possible, an error free elevation model. The 

slope gradient was computed both in degree and percent according to models requirements. 

The soil and land use maps were updated with attributes representing erosion coefficients and 

converted to raster layers at the DEM resolution. In order to compute the models without flat 

surfaces and inhabited areas, we created a mask in which the floodplains, plateaus and 

rural/urban areas were excluded. 

In what regards the choice of the factors entering the formula, the approach went on 

two directions.  

Rainfall erosivity (K) value was constant and equal to 0.144 (ICPA, 1987). The study 

area is located at the limit between the values 0.100 and 0.144 on the ICPA map, but taking 

into consideration that Stângă (2011) demonstrated with the help of the Modified Fournier 

Index that the area is characterized by medium rainfall erosivity, the higher value was chosen 

for the entire basin.  

Slope length (L
m

) was determined differently according to the model used.  For the 

USLE model, it was determined using the module from SAGA GIS, the value of the m factor 

being 0.3. In the RUSLE3D approach, the slope length factor was replaced by upslope 

contributing area and combined with slope declivity. Mitasova et al. (1996) derived a simpler, 

continuous form of the equation: 

LS(r)  =  (m+1)  [ A(r) / a0 ]
m 

 [ sin b(r) / b0 ]
n
 

where A[m]  is upslope contributing area per unit contour width, b [deg] is the slope, m and n 

are parameters, and a0  = 22.1m  is the length and b0 = 0.09 = 9% = 5.16deg is the slope of the 

standard USLE plot. The conclusion of the authors is that the upslope area-based factor 

reflects better the impact of concentrated flow on increased erosion. 

For USLE, slope declivity factor (I
n
) was computed according to Moţoc et al.’s (1975) 

formula using the slope computed in percent. 

For soil erodability (S) the ICPA (1987) standards were used, taking into account the 

soil type, texture and surface erosion degree, based on the 1:10000 soil maps from OSPA 

Vaslui. Values vary between 0.6 for the less erodable soils and 1.1 for those with the highest 

susceptibility to this process. 

The effect of vegetation was assessed in two ways, first based on the NDVI index 

derived from Landsat satellite images, using the formula proposed by Van der Knijff et al. 

(2000): 
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where: α and β are coefficients with the values of 2, respectively 1. 

After calculating the equation, the image was resampled to match the resolution and 

extent of study area. 

The second approach was according to the Romanian methodology. Land use classes 

were determined from the 1:5000 aerial images from 2009, and values were given according 

to Moţoc and Sevastel (2002). In some cases were computed medium values for land use 

classes not found in literature: 0.001 for forests, 0.2 for complex arable terrains and pastures 

mixed with brushwood, 0.3 for grasslands, 0.5 for orchards, 0.6 for degraded orchards and 

arable terrains, 0.7 for vineyards and 0.8 for degraded vineyards. 

Factor P, the effect of management, has been considered equal to 1, due to the scale 

of the approach. 

Because there are no measured values of erosion rates in the basin, an attempt of 

validating the models was done using basic statistic parameters and distributions of the 

obtained values on land use categories, relief forms and some control plots. 

 

RESULTS AND DISCUSSIONS 

 

The statistical data for the five erosion models computed (Tab. 1) show small 

differences in what regards the maximum values. Taking into account that the maximum 

values are associated with very small surfaces with large slopes (landslide scarps), the most 

relevant statistical value remains the mean. Analyzing these data, we observe a clear 

separation among the models: USLE give mean values of 7.78-8.16 t/ha/y, while RUSLE3D 

versions give higher values, of 19.24-22.24 t/ha/y. Combining the RUSLE and USPED 

rasters, we can see an improvement in the data, in the sense of a reduction of the mean values 

up to 14.6 t/ha/y. 
Tab. 1 

Statistical values regarding soil erosion estimates (t/ha/y) for the five versions of models applied 
 

 

USLE (factor C 

aerial images) 

RUSLE3D (factor C 

aerial images) 

USLE (factor C 

NDVI) 

RUSLE3D (factor C 

NDVI) USPED+RUSLE 

Max 315.3 392 208.4 496.65 392 

Min 0 0 0 0 0 

Med 7.78 19.24 8.16 22.24 14.6 

Median 5.65 15.55 5.46 15.45 9.42 

Mode 0.03 0.04 0.02 0.06 0.04 

St. dev 8.68 18.74 9.45 24.42 17.89 

 

Because of the different choice of factors, the effective erosion values obtained by the 

authors who approached USLE modeling in GIS are also different. The mean values vary 

from 0.0 t/ha/y (Prefac 2008 for the sector of Lower Siret Plain of the Râmna basin) up to 

4.57 t/ha/y (Patriche 2005, Central Moldavian Tableland) and 5.04 t/ha/y (Prefac 2008, the 

depression area of the same basin). The highest values, and ones of the few validated, have 

been obtained by Patriche et al. (2006) for the mountainous basins of Hurjui and Hanganu 

(38.1, respectively 28.8 t/ha/y). Most of the studies have obtained small mean values of 

erosion (0.5-2 t/ha/y), most probably because of taking into account the entire study regions, 

including areas without erosion such as floodplains. More, most of the studies conducted in 



168 

 

Romania specify that percentages of the regions studied varying between 60 (frequently 80) 

are characterized by an effective erosion rate lower than 1 t/ha/y (Anghel et al. 2007, Anghel 

and Todică 2008, Prefac 2008, Horvath et al. 2008, Bilaşco et al. 2009, Niacşu 2009, 

Ştefănescu et al. 2011, Arghiuş and Arghiuş 2011). 

Measured values of soil erosion in NE Romania reach for example 4.8 t/ha/y. In the 

Scobâlţeni basin, during 1980-2010 the mean erosion rates have been of 18.17 under bare 

fallow, 8.93 under sunflower, 8.39 under maize and 1.62 under wheat (Bucur et al., 2011). 

Popa et al. (2010) have determined averages of soil losses at Perieni of 0.16 to/ha/y for brome 

grass, 0.86 to/ha/y for wheat, 9.30 to/ha/y for corn and 43.12 to/ha/y for black fallow. 

Sevastel et al. (2010) mention some erosion figures for Aldeni - Buzau, for situations 

including standard runoff plots of 40 m
2
 and 100 m

2
, with loamy textured chernozems and 

mean annually precipitation of about 450 mm (for the period 1995-2010). For slopes of 15% 

and 20%, the soil losses have been of 40.95 – 97.9 t/ha/y in the case of bare soil, 13.1-32.9 for 

corn, 2.9-3.8 for winter wheat, and 0.2-0.3 for perennial grass. 

Having in view the comparison of our data with those obtained by other authors, and 

also the variation of the measured soil erosion rates, we appreciate the USLE (ROMSEM) 

method as giving more realistic values in case of sheet erosion.  

 The map of mean annual soil losses produced by surface erosion (fig. 1) and its 

corresponding histogram show that 70.5% of the basin (21,789 ha) is characterized by 

unappreciable and weak erosion. Moderate erosion affects 21.2% of the region’s surface, 

while strong and very strong erosion affect only 7.22, respectively 0.98%. 

Fig. 1. Graphical representations of some of the erosion models compute 

  

 The most affected areas are the degraded orchards and vineyards, where erosion rates 

exceed 20 t/ha/y (Tab. 2). Pastures are on the overall characterized by an erosion rate of 9.6 

t/ha/y, and arable terrains by 8.82 t/ha/y.  
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Tab. 2 

Medium values of soil erosion (t/ha/y) on land use categories 
 

 

USLE (factor C  

aerial images) 

RUSLE3D  

(factor C  

aerial images) 

USLE  

(factor C  

NDVI) 

RUSLE3D  

(factor C  

NDVI) 

USPED+ 

RUSLE 

Degraded  

orchards 23.4 52.73 12.97 35.3 40.39 

Degraded vineyards 19.6 46.88 11.6 30.85 35.82 

Vineyards 11.07 29.25 6.24 16.93 22.6 

Pastures 9.6 21.97 11.15 31.29 16.33 

Arable terrains 8.82 22.57 7.76 21.08 17.15 

Complex arable 8.67 15.51 9.89 28.46 10.85 

Pastures with 

brushwood 7.61 17.7 13.12 36.14 12.07 

Orchards 5.05 13.55 3.06 8.49 9.63 

Forests 0.32 0.71 0.31 0.76 0.32 

 

 Computing the erosion risk classes on landform types (extracted with the help of the 

Digital Elevation Model), the tendency is clear. Erosion rates increase from landforms with 

low declivities such as terraces or hilltops to those with higher declivities (cuesta 

escarpments, slopes) (Fig. 2). Most of the terrains characterized by strong erosion (20-40 

t/ha/y) are found on north- and west-facing cuestas, as well as on weakly or strongly degraded 

slopes. The few areas with very strong erosion are to be found on cuesta escarpments. 
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Fig. 2. Distribution of erosion risk classes on types of landforms 

 

 Besides the comparison with values found in literature, an attempt of validating the 

results of the models was made by selecting a few plots characterized by different agricultural 

management types (Tab. 3). It can be seen that the results are quite valid. As it was expected, 

the highest erosion values are found in the case of a high slope up-and-down hill tillage 
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system and of a pasture. In the opposite corner are two cases of good management: stripped 

crops and contour tillage, cases in which estimated erosion enters the limits of acceptable soil 

losses (6-8 t/ha/y, Moţoc et al., 1975). 

 
Tab. 3 

Maximum and medium values of soil erosion (t/ha/y) for the validation plots 

 

Validation plots 

USLE (factor C  

aerial images) 

RUSLE3D  

(factor C  

aerial images) 

USLE  

(factor C  

NDVI) 

RUSLE3D  

(factor C  

NDVI) 

USPED+ 

RUSLE 

max med max med max med max med max med 

Up-and-down  

hill tillage 65.2 23.61 56.7 20.15 142.9 56.48 122.86 53.68 142.9 44.02 

Pasture 33.03 10.7 67.1 15.5 48.54 20.92 151.9 39.57 48.11 15.37 

Orchard 25.85 7.27 43.01 5.61 89.05 22.9 102.7 17.72 81.92 15.62 

Up-and-down 

hill tillage 63.7 7.26 42.4 7.25 135.5 22.44 222.6 23.41 135.5 17.08 

Stripped crops 44.64 7.23 49.7 5.78 158.8 20.07 142.86 16.51 137.8 16.51 

Contour tillage 17.86 6.25 23.7 8.27 44.16 15.59 61.9 20.49 44.16 11.36 

 

CONCLUSION 

 

Analyzing the result of these models, we can conclude that the obtained values can be 

compared with those from test plots, but certain specifications need to be made. Thus, the 

USLE model is suitable only for small areas (parcels, plots, etc.) and the values are 

representing the soil loss through sheet erosion. For landscape scale, where other features 

appear, such as landslides, abrupt slopes, small valleys, etc. the RUSLE3D is more realistic. 

In addition, values represent rill and interrill erosion. Combining the RUSLE3D with USPED 

model, we can obtain a good representation of areas most susceptible to be affected by 

erosion. Better result can be obtained if NDVI is used instead of digitized land use for 

vegetation influence because of better temporal resolution. Using satellite images also 

presents the advantage of vegetation influence value per pixel, which is more accurate than 

the standard method. 

On the overall, as Horvath et al. (2008) affirmed, such models inherently include 

errors, because they are based on empirical equations. The use of such models is best to be 

resumed to identifying areas at risk, where management actions have to be taken. In order to 

reach a GIS-applicable method for better estimating soil loss by erosion, the Romanian 

adaptation of the USLE equation needs a re-evaluation of some of the factors. 
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