Evaluation of Antiproliferative Potential of Cerium Oxide Nanoparticles on HeLa Human Cervical Tumor Cell

  • Zorița Diaconeasa Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372, Cluj-Napoca
  • Lucian Barbu Tudoran Faculty of Biology & Geology, Babes-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca
  • Cristina Coman Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372, Cluj-Napoca
  • Loredana Leopold Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372, Cluj-Napoca
  • Amalia Mesaroș Faculty of Materials Engineering and Environment, Technical University Cluj-Napoca, Bul. Muncii 103-105, 400641, Cluj-Napoca
  • Oana Pop Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372, Cluj-Napoca
  • Dumitrița Rugină Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372, Cluj-Napoca
  • Carmen Socaciu Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372, Cluj-Napoca
Keywords: nanoparticles, cerium, cervical cancer, MTT

Abstract

Cerium oxide nanoparticles (CeO2 nanoparticles) as nanomaterials have promising biomedical applications. In this paper, the cytotoxicity induced by CONPs human cervical tumor cells was investigated. Cerium oxide nanoparticles were synthesized using the precipitation method. The nanoparticles were found to inhibit the proliferation of HeLa human cervical tumor cells in a dose dependent manner but did not showed to be cytotoxic as analyzed by MTT assay. The administrated treatment decreased the HeLa cell viability cells from 100% to 65% at the dose of 100 μg/mL.

References

Albadarin, A. B., Z. Yang, et al. (2014). Experimental design and batch experiments for optimization of Cr(VI) removal from aqueous solutions by hydrous cerium oxide nanoparticles. Chemical Engineering Research and Design 92(7): 1354-1362.

Alili, L., M. Sack, et al. (2013). Downregulation of tumor growth and invasion by redox-active nanoparticles. Antioxid Redox Signal 19(8): 765-778.

Babenko, L. P., N. M. Zholobak, et al. (2012). Antibacterial activity of cerium colloids against opportunistic microorganisms in vitro. Mikrobiol Z 74(3): 54-62.

Celardo, I., J. Z. Pedersen, et al. (2011).

Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3(4): 1411-1420.

Celardo, I., E. Traversa, et al. (2011). Cerium oxide nanoparticles: a promise for applications in therapy. J Exp Ther Oncol 9(1): 47-51.

Chen, H.-I. and H.-Y. Chang (2005). Synthesis of nanocrystalline cerium oxide particles by the precipitation method. Ceramics International 31(6): 795-802.

Ciofani, G., G. G. Genchi, et al. (2013). Effects of cerium oxide nanoparticles on PC12 neuronal-like cells: proliferation, differentiation, and dopamine secretion. Pharm Res 30(8): 2133-2145.

Clark, A., A. Zhu, et al. (2011). Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis. Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 13(10): 5547-5555.

Fisichella, M., F. Berenguer, et al. (2014). Toxicity evaluation of manufactured CeO2 nanoparticles before and after alteration: combined physicochemical and whole-genome expression analysis in Caco-2 cells. BMC Genomics 15(1): 700.

Hirst, S. M., A. S. Karakoti, et al. (2009). Anti-inflammatory properties of cerium oxide nanoparticles. Small 5(24): 2848-2856.

Ivanova, O. S., T. O. Shekunova, et al. (2011). One-stage synthesis of ceria colloid solutions for biomedical use. Doklady Chemistry 437(2): 103-106.

Karakoti, A. S., S. Singh, et al. (2009). "PEGylated Nanoceria as Radical Scavenger with Tunable Redox Chemistry. Journal of the American Chemical Society 131(40): 14144-14145.

Khan, S. A. and A. Ahmad (2013). Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Materials Research Bulletin 48(10): 4134-4138.

Kong, L., X. Cai, et al. (2011). Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways. Neurobiology of disease 42(3): 514-523.

Korsvik, C., S. Patil, et al. (2007). Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun 14(10): 1056-1058.

Mahtab, R., J. P. Rogers, et al. (1995). Protein-Sized Quantum Dot Luminescence Can Distinguish between "Straight", "Bent", and "Kinked" Oligonucleotides. Journal of the American Chemical Society 117(35): 9099-9100.

Mittal, S. and A. K. Pandey (2014). Cerium Oxide Nanoparticles Induced Toxicity in Human Lung Cells: Role of ROS Mediated DNA Damage and Apoptosis. BioMed Research International 2014: 14.

Pantarotto, D., C. D. Partidos, et al. (2003). Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol 10(10): 961-966.

Pirmohamed, T., J. M. Dowding, et al. (2010). Nanoceria exhibit redox state-dependent catalase mimetic activity. Chemical Communications 46(16): 2736-2738.

Pourkhalili, N., A. Hosseini, et al. (2011). Biochemical and cellular evidence of the benefit of a combination of cerium oxide nanoparticles and selenium to diabetic rats. World Journal of Diabetes 2(11): 204-210.

Pourkhalili, N., A. Hosseini, et al. (2012). Improvement of isolated rat pancreatic islets function by combination of cerium oxide nanoparticles/sodium selenite through reduction of oxidative stress. Toxicol Mech Methods 22(6): 476-482.

Renu, G. D. R., V.V.; Nair, S.V.; Subramanian, K.R.V.; Lakshmanan, V.-K. (2012). Development of cerium oxide nanoparticles and its cytotoxicity in prostate cancer cells. Advanced Science Letters 6: 17-25.

Roy, S., S. K. Dontamalla, et al. (2011). Downregulation of apoptosis and modulation of TGF-beta1 by sodium selenate prevents streptozotocin-induced diabetic rat renal impairment. Biol Trace Elem Res 139(1): 55-71.

Sahoo, S. K., S. Parveen, et al. (2007). The present and future of nanotechnology in human health care. Nanomedicine 3(1): 20-31.

Salata, O. (2004). Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology 2(1): 3.

Schubert, D., R. Dargusch, et al. (2006). Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342(1): 86-91.

Thakur, S. and P. Patil (2014). Rapid synthesis of cerium oxide nanoparticles with superior humidity-sensing performance. Sensors and Actuators B: Chemical 194(0): 260-268.

Wang, S., N. Mamedova, et al. (2002). Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates. Nano Letters 2(8): 817-822.

Wason, M. S. and J. Zhao (2013). Cerium oxide nanoparticles: potential applications for cancer and other diseases. Am J Transl Res 5(2): 126-131.

Published
2015-05-21