A Comparison of Beekeeping Sectors between Slovakia and Romania

Peter ŠEDÍK1, Cristina Bianca POCOL2* and Elena HORSKÁ1

1Department of Marketing and Trade. Slovak University of Agriculture, Trieda Andreja Hlinku 609/2, 949 76 Nitra-Chrenová, Slovakia
2Department of Economics. University of Agricultural Sciences and Veterinary Medicine, 3-5 Manastur St., Cluj Napoca, Romania
*Corresponding author, e-mail: cristina.pocol@usamvcluj.ro

ABSTRACT
Beekeeping sector plays an essential role in agriculture for two main reasons: the process of pollination and the production of honey and other apicultural products. The aim of the paper was to analyse and compare beekeeping sectors between Slovakia and Romania in terms of honey production, market competitiveness and EU funding budget allocation. The secondary data used in the analysis were provided by European Commission reports, the Romanian Institute of Statistics, Slovak statistics, Central Register of Hives in Slovakia, Faostat and Trademap. The competitiveness in honey market was calculated using RCA indices and the Michaely index. Results show that the number of hives as well as honey production increased, while market competitiveness decreased. In conclusion, national beekeeping programmes provide financial support for beekeepers and foster the whole sector, therefore the European Union should continue implementing these programmes to stabilize this sector and increase production capacities in both countries.

Keywords: Beekeeping sector, RCA indices, Romania, Slovakia

INTRODUCTION
Beekeeping is defined as an agricultural sector, which ensures sustainability of ecosystems and rural development involving also the production of honey and other bee products (Levický and Gurčík, 2014). The main indicators for the beekeeping sector are the number of beehives, the proportion of professional beekeepers and honey yields (Chlebo, 2017). Furthermore, beekeeping sector plays an essential role in agriculture because of the pollination process and, in addition, ensures the production of honey and other apicultural products. Worldwide, Apis mellifera is the crucial pollinator for monoculture (Klein et al., 2007) as honeybee can reach relatively long distance and possesses effective foraging behaviour (Künast et al., 2011). Pollination depends on the population of bees and any decrease of the population in the future may cause both ecological and economic problems in terms of ecosystems sustainability and food security (Opera Research, 2010). A significant reduce of the pollinators population can create a “pollination crisis” at a global level (Jacques et al., 2016).

After a significant loss of the bee population in Europe, the European Union realized that this sector is confronted with an urgent crisis and decided to start the implementation of beekeeping programmes, which included several measures on beekeeping in order to foster honey production and improve bee products marketing strategies. These measures involve disease prevention and hive restocking. The primary support came from the Council Regulation (EC) no. 1221/1997, which describes all necessary steps and rules for providing 50% of co-financing from the EU. Each
member state had to create a national apiculture programme and plan budget allocation (Food and Agriculture Organization, 2011). The remaining 50% of funding is covered by the national budget of each member state (Pocol, 2011). As for the national beekeeping programme, the budget is allocated for these measures: varroasis control, technical assistance, rationalization of transhumance, hive restocking, applied research, honey analysis (European Commission, 2013). For 2017-2019, the European Union decided to extend these measures and include analyses of apiculture products and product quality (European Commission, 2017). Nowadays, product quality is more important than ever before (Nagyová et al., 2014).

The national beekeeping programmes ensure competitiveness of the sector by increasing and restocking beehives, increasing the number of professional beekeepers, developing consultancy service for beekeepers, providing modern equipment and technologies, enhancing honey quality, productivity and monitoring honey market (European Commission, 2016).

The aim of this paper is to analyse and compare beekeeping sectors between Slovakia and Romania in terms of sector structure, honey production, competitiveness in honey market, the EU funding and budget allocation from national beekeeping programmes.

MATERIALS AND METHODS

For analysing the beekeeping sectors, was used secondary data provided by European Commission reports, the National Institute of Statistics in Romania, the Statistical Office of the Slovak Republic, the Central Register of Hives in Slovakia, FAOSTAT and Trademap. The assessment of competitiveness in honey market was calculated through RCA indices and the Michaely index.

The procedure for indices calculation

Revealed comparative advantage index RCA (1):

\[
RCA = \ln \left[\frac{(x : m)}{(X : M)} \right]
\]

Where:
- \(x\) – export of a commodity,
- \(m\) – import of a commodity,
- \(X\) – total country’s export,
- \(M\) – total country’s import.

Result of quantification:
- \(RCA > 0\) – comparative advantage,
- \(RCA < 0\) – comparative disadvantage.

(Levický and Lajdová, 2011)

Index of Competitiveness Growth RCA 1 (2):

\[
RCA_1 = \left[\frac{(X_{ij} : X_i)}{(X_j : X)} \right]
\]

Where:
- \(X_{ij}\) – export of country “i” in commodity group “j”
- \(X_i\) – total export of country “i”
- \(X_j\) – world’s export in commodity group “j”
- \(X\) – total world’s export

Result of quantification:
- \(RCA_1 > 1\) – revealed comparative advantage,
- \(RCA_1 < 1\) – comparative disadvantage,
- \(RCA_1 = 1\) – neutral competitiveness, do not quantify comparative advantage or disadvantage

(Aiginger and Landesmann, 2002)

Index of net business performance RCA 2 (NEI) (3):

\[
RCA_2 = \left[\frac{(X_{ij} - M_{ij})}{(X_{ij} + M_{ij})} \right]
\]

Where:
- \(X_{ij}\) – export of country “i” in commodity group “j”,
- \(M_{ij}\) – import of country “i” in commodity group “j”.

Result of quantification:
- \(RCA_2 (0,1)\) – comparative advantage (reduced import)
- \(RCA_2 (-1,0)\) – comparative disadvantage (reduced export)
- \(RCA_2 = 0\) – export = import (Balassa, 1965, p. 90-124)

Michaely index (4):

\[
Mi = \frac{X_{ij}}{(\sum_i X_{ij}) + M_{ij}}/\sum_i M_{ij}
\]

Where:
- \(X_{ij}\) – the export of commodity group “i” of country “j”
- \(M_{ij}\) – the import of commodity group “i” of country “j”
- \(\sum_i X_{ij}\) – total national export
- \(\sum_i M_{ij}\) – total national import
A Comparison of Beekeeping Sectors between Slovakia and Romania

Result of quantification:
0 < Mi < 1 – certain degree of specialization of a country, especially the commodity group
-1 < Mi < 0 – insufficient degree of specialization of a country, especially the commodity group (Michaely, 1962)

RESULTS AND DISCUSSION

The beekeeping sector’s structure is primarily characterized by the number of beehives, beekeepers, and professional beekeepers (beekeepers with more than 150 hives). As shown in Table 1, in 2015, Slovakia had 17,171 beekeepers taking care of 278,286 hives. Only 56 of them were professional beekeepers, counting for a number of 11,457 hives. More than 90% of all beekeepers are organized in associations; mainly, in the Slovak Association of Beekeepers. The structure of this sector in Romania is slightly different. In 2015, the total number of beekeepers was 22,930 with 1,392,846 hives. Approximately 1,545 are professional beekeepers with 299,243 hives. All beekeepers are organized.

Another important aspect in evaluating the beekeeping sector is the development of bee population in time. According to Figure 1, the number of beehives in Slovakia had been decreasing since 1990 till 2004 when a slight recovery can be observed. However, a gradual increase has been observed after 2007 till nowadays. The situation in Romania is quite similar, where a sharp decrease had been observed in the period 1991 – 1999. The number of bees started to increase since 2000. Nevertheless, the significant increase has been recorded since 2007 till nowadays. The increasing tendency in number of hives in both countries has been significantly influenced by EU subsidies through beekeeping programme implementations, including restocking hives and supporting new beekeepers as well as through measures financed by the National Rural Development Programme.

The number of hives and beekeepers relates to honey production. Figure 2 illustrates honey production in both countries for 2007 – 2015.
Slovak beekeeping industry experiences a stable production with minor fluctuation from 3,304 tons to 4,326 tons, while in Romania honey production has been increasing continuously since 2007. However, a sharp decline was recorded in 2014 followed by a spectacular increase. One of the possible reasons for the massive decrease in 2014 could be the bad weather conditions or high bee mortality during winter.

For an even more insightful study, the next step was to analyse the percentage changes in honey production, by regions, between 2013 and 2015. Data show (see Tab. 2) that the total Slovakian honey production increased by 10.74%. The major increase was obtained in these regions: Central Slovakia (+16.00%) and Bratislava (+12.96%). The lowest increase was recorded in Eastern Slovakia (+7.00%).

A similar situation is observed in Romania (see Table 3), where the total honey production had increased by 4.55% from 2013 to 2015. The highest increase was reached in North-East (+18.88%) and North-West (+14.47%) regions while lowest decrease was obtained in Bucharest.
A Comparaison of Beekeeping Sectors between Slovakia and Romania

Honey production significantly depends on the number of beehives, rationalization of transhumance and modernization of technologies in beekeeping. In both countries, the number of hives increased, impacting the overall honey production, which increased as well. In Slovakia, many new beekeepers appeared due to subsidies provided through national beekeeping programmes. According to table 4, EU allocated in 2015/2016 the sum of 1 097 820 €. A significant share was allocated to technical assistance, varroasis control, rationalization of transhumance and hive restocking. All these measures can influence bees’ productivity. For example, Slovak beekeepers have moved their hives from one region to another to prolong the foraging period in order to increase their average production. For 2014-2016, both countries have been approved their national apiculture programmes. EU approved 3 295 956 € for Slovakia and 20 045 340 € for Romania (Tab. 4). The amount of approved fund depends on the number of beehives in country, therefore Romania got significantly higher funds than Slovakia.

Between 2017-2019, Slovakia is going to allocate approximately 1 120 000 € from the national beekeeping program. Most of these funds will be spent on technical assistance (890 000 €) and measures to combat beehive invaders and diseases (700 000 €) as these issues still represent a major problem for beekeepers. Moreover, restocking of hives (200 000 €) and rationalization of transhumance (100 000 €) is going to have a significant share in the budget allocation structure (Tab. 5).

According to table 6, Romania is planning to allocate around 7 million €. In comparison to Slovakia, Romania’s budget is going to cover only a few measures. The major amount will be spent on restocking hives, followed by rationalization of transhumance and combating beehive invaders and disease. A smaller amount is going to be allocated to technical assistance and analysis of apicultural products. The measures such as applied research, market monitoring and enhancement of product quality will not be funded at all.

The last aspect in the evaluation of both beekeeping sectors is competitiveness on honey market. For this reason, several indices had been applied. In the case of measuring the degree of specialization in the honey industry, the Michaely index was applied. Slovakia obtained a certain degree of specialization on the market during 2003-2009 (see Figure 3). The range of calculated values

Tab. 4. Budget allocation for 2014-2016

<table>
<thead>
<tr>
<th>Period</th>
<th>Slovakia</th>
<th>Romania</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013/2014</td>
<td>1 098 966 €</td>
<td>6 683 690 €</td>
</tr>
<tr>
<td>2014/2015</td>
<td>1 099 170 €</td>
<td>6 684 930 €</td>
</tr>
<tr>
<td>2015/2016</td>
<td>1 097 820 €</td>
<td>6 676 720 €</td>
</tr>
<tr>
<td>Total</td>
<td>3 295 956 €</td>
<td>20 045 340 €</td>
</tr>
</tbody>
</table>

Source: European Commission 2017

Tab. 5. Future budget allocation in Slovakia

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical assistance</td>
<td>890 000 €</td>
<td>890 000 €</td>
<td>890 000 €</td>
</tr>
<tr>
<td>Combating beehive invaders and diseases</td>
<td>700 000 €</td>
<td>700 000 €</td>
<td>700 000 €</td>
</tr>
<tr>
<td>Rationalization of transhumance</td>
<td>100 000 €</td>
<td>100 000 €</td>
<td>100 000 €</td>
</tr>
<tr>
<td>Analysis of apicultural products</td>
<td>70 000 €</td>
<td>70 000 €</td>
<td>70 000 €</td>
</tr>
<tr>
<td>Restocking of hives</td>
<td>200 000 €</td>
<td>200 000 €</td>
<td>200 000 €</td>
</tr>
<tr>
<td>Applied research programmes</td>
<td>40 000 €</td>
<td>40 000 €</td>
<td>40 000 €</td>
</tr>
<tr>
<td>Market monitoring</td>
<td>5 000 €</td>
<td>5 000 €</td>
<td>5 000 €</td>
</tr>
<tr>
<td>Enhancement of product quality</td>
<td>5 000 €</td>
<td>5 000 €</td>
<td>5 000 €</td>
</tr>
<tr>
<td>Total</td>
<td>1 120 000 €</td>
<td>1 120 000 €</td>
<td>1 120 000 €</td>
</tr>
</tbody>
</table>

Source: European Commission 2016
was from 0.0002243 to 0.0000299. However, since then, it reached an insufficient degree of specialization. The range was from -0.0000520 to -0.000111 in comparison with Romania that achieved, for all years analysed, a certain degree of specialization with data ranging from 0.00144 to 0.00039. Nevertheless, specialization has a decreasing trend as most products in Romania in terms of specialization (Ignjatijević et al., 2015).

The next RCA indices shows competitiveness in terms of comparative advantage and according to table 7, Slovakia obtained the comparative

Tab. 6. Future budget allocation in Romania

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical assistance</td>
<td>435 000 €</td>
<td>463 500 €</td>
<td>465 000 €</td>
</tr>
<tr>
<td>Combating beehive invaders and diseases</td>
<td>1 180 371 €</td>
<td>1 196 949.60 €</td>
<td>1 217 948.72 €</td>
</tr>
<tr>
<td>Rationalization of transhumance</td>
<td>2 042 440.32 €</td>
<td>2 093 280.28 €</td>
<td>2 137 488.95 €</td>
</tr>
<tr>
<td>Analysis of apicultural products</td>
<td>320 000 €</td>
<td>0.00 €</td>
<td>0.00 €</td>
</tr>
<tr>
<td>Restocking of hives</td>
<td>3 526 746.24 €</td>
<td>3 746 684.35 €</td>
<td>3 757 736.52 €</td>
</tr>
<tr>
<td>Applied research programmes</td>
<td>0.00 €</td>
<td>0.00 €</td>
<td>0.00 €</td>
</tr>
<tr>
<td>Market monitoring</td>
<td>0.00 €</td>
<td>0.00 €</td>
<td>0.00 €</td>
</tr>
<tr>
<td>Enhancement of product quality</td>
<td>0.00 €</td>
<td>0.00 €</td>
<td>0.00 €</td>
</tr>
<tr>
<td>Total</td>
<td>7 504 557.56 €</td>
<td>7 036 914.23 €</td>
<td>7 578 174.19 €</td>
</tr>
</tbody>
</table>

Source: European Commission 2016

Tab. 7. RCA indices

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Slovakia</td>
<td>1.19</td>
<td>1.68</td>
<td>0.48</td>
<td>0.74</td>
<td>0.21</td>
<td>0.30</td>
<td>0.78</td>
<td>-1.34</td>
<td>-1.16</td>
<td>-0.89</td>
<td>-0.60</td>
<td>-0.87</td>
<td>-1.54</td>
<td>-1.83</td>
</tr>
<tr>
<td>Romania</td>
<td>4.15</td>
<td>5.25</td>
<td>6.04</td>
<td>5.32</td>
<td>3.60</td>
<td>3.04</td>
<td>3.59</td>
<td>3.09</td>
<td>2.62</td>
<td>2.35</td>
<td>2.40</td>
<td>1.98</td>
<td>2.15</td>
<td>1.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Slovakia</td>
<td>1.89</td>
<td>2.92</td>
<td>1.15</td>
<td>1.50</td>
<td>4.07</td>
<td>2.21</td>
<td>0.89</td>
<td>0.27</td>
<td>0.46</td>
<td>0.38</td>
<td>0.75</td>
<td>0.42</td>
<td>0.22</td>
<td>0.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Slovakia</td>
<td>0.52</td>
<td>0.67</td>
<td>0.20</td>
<td>0.32</td>
<td>0.10</td>
<td>0.13</td>
<td>0.38</td>
<td>-0.59</td>
<td>-0.52</td>
<td>-0.40</td>
<td>-0.27</td>
<td>-0.38</td>
<td>-0.64</td>
<td>-0.72</td>
</tr>
<tr>
<td>Romania</td>
<td>0.96</td>
<td>0.99</td>
<td>0.99</td>
<td>0.98</td>
<td>0.91</td>
<td>0.85</td>
<td>0.93</td>
<td>0.89</td>
<td>0.84</td>
<td>0.79</td>
<td>0.82</td>
<td>0.73</td>
<td>0.76</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Source: Trademap 2017

Fig. 3. Michaely index

Source: Trademap, 2017

was from 0.0002243 to 0.0000299. However, since then, it reached an insufficient degree of specialization. The range was from -0.0000520 to -0.000111 in comparison with Romania that achieved, for all years analysed, a certain degree of specialization with data ranging from 0.00144 to 0.00039. Nevertheless, specialization has a decreasing trend as most products in Romania in terms of specialization (Ignjatijević et al., 2015).

The next RCA indices shows competitiveness in terms of comparative advantage and according to table 7, Slovakia obtained the comparative
advantage between 2003-2008 in RCA and RCA 1 and 2003-2009 in RCA, which was influenced by suitable climate conditions and rich bee pasture (Levický and Lajdová, 2011). However, the situation has changed and after 2008 and 2009, Slovakia has lost this advantage until today. It can be explained by an overall decrease in competitiveness of the whole food industry in Slovakia (Qineti et al., 2009) as well as due to increasing consumption of honey which cause higher demand and increase of imported honey as food market is influenced by the new trends connected with healthy lifestyle (Kubicová and Kádeková, 2016). The situation in Romania is different as, for the whole period and for all indices, Romania achieved comparative advantage in honey trade as it is net exporter of honey with good recognition worldwide (Pocol et al., 2017). The maximum value was obtained in 2003 (11.47) and the lowest value in 2014 (1.98).

CONCLUSION
The paper analysed and compared beekeeping sectors in Slovakia and Romania and EU funding through national beekeeping programmes. Regarding the structure of beekeeping sectors, Romania has 5,000 more beekeepers than Slovakia and 5 times more hives. The number of professional beekeepers is higher in Romania. Since 2007, both countries have an increasing trend in number of hives. The Slovakian production of honey is stable, while the Romanian production has been continuously increasing since 2007. Both countries have positive percentage change in overall honey production in the period of 2013-2015. However, three Romanian regions: South – Muntenia, West and Southwest Oltenia obtained negative changes. In terms of EU funding, both countries are using this opportunity through national apiculture programmes. While Slovakia is going to allocate funds among all measures, Romania is going to allocate funds only for restocking hives, rationalisation of transhumance, combating beehive invaders and disease, technical assistance and analysis of apicultural products. As for market competitiveness, Romania obtained for all indices a comparative advantage, despite registering a decreasing tendency. Slovakia obtained a comparative advantage between 2003-2009, losing this advantage after 2009. This situation occurred due to the increasing honey consumption, which lead to a growth of honey volumes imported from other countries.

RECOMMENDATIONS
The implementation of national beekeeping programmes provides financial support for beekeepers and foster the whole sector. For all these reasons, the European Union should continue to support beekeepers to stabilize this sector and increase production capacities in both countries.

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

REFERENCES

