Influence of Technology and Environment on the Pollen Germination Capacity in Cherry

Andreea Flavia ANDRECAN¹, Viorel MITRE¹, Olimpia IORDÂNESCU², and Mirela Irina CORDEA¹

University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Advanced Horticultural Research Institute of Transylvania, 3-5 Mănăstur St. Cluj-Napoca, Romania
²Department of Fruit growing, University of Agricultural Sciences and Veterinary Medicine of Banat,”King Mihai I of Romania, Timisoara
¹corresponding author: andreaflavia_tripon@yahoo.com

Bulletin UASVM Horticulture 75(2) / 2018
Print ISSN 1843-5262, Electronic ISSN 1843-536X
DOI:10.15835/buasvmcn-hort: 2018.0040

Abstract
Pollen of four cherry cultivars (‘Lapins, ‘Kordia, ‘Sylvia, ‘Regina’) was collected and examined with microscope to determine its germination capacity. It was observed that pollen fertility varied from 18.7 % to 80.1 %. Environmental conditions of the studied area as well as applied treatments affected pollen germination capacity. Due to the high maximum temperature recorded in 13.03.2018, bud formation was induced 18 day earlier than in the previous years, growth started on March 31st, when the temperature was 21.5°C. Regarding production, the highest yield was obtained in ‘Regina’ variety 9.7 kg/tree, ‘Kordia’ 9.3 kg/tree, ‘Lapins’ 8.8 kg/tree and Sylvia 8.2 kg/tree. In autumn of the previous year, the trees were fertilized with urea, in a concentration of 3 kg per ha, and in the spring with CROPAID, in a concentration of 5 liters per ha. The results show that germination percentage was much higher in the pollen collected from the treated trees than in the untreated ones.

Keywords: cherry, cultivars, germinability, pollen

Introduction
Sweet cherry is a fruit tree with high economic importance, due to the nutritional, commercial and technological value of the fruits. Being the first fresh fruit of the year, with a high content of vitamins, mineral salts, sugars and other nutrients cherries are one of the most valuable fruits. There are also some other early fruits, starting with the second half of May until July, without competing with other fruit tree species. As previous studies show, pollen germination capacity depends on various conditions, like environmental factors, or fertilizer management would be more appropriate of species and varieties grown (Cordea, 2014; Ercisli, 2007; Zheng et al., 2016).

Aims
The main objective of this study was to investigate pollen germinability of some sweet cherry cultivars grown in the environmental conditions of Cluj-Napoca city, in 2018.

Materials and Methods
The experiment was carried out in SC FERMA STELUȚA SRL Cluj Napoca, in a recently established orchard, in 2011. Trees were planted at 4 m distance between the rows and 1.5 m between trees in a row, getting a high density of 1666 trees/ha. The plantation has been equipped with a fertilization system with automatic programming and anti-hail support system. In autumn the trees were fertilized with urea, and in spring with CROPAID (natural plant antifreeze). The tree canopy was manipulated according to Zahn Spindel technique. Varieties planted were: ‘Lapins’, ‘Kordia’, ‘Sylvia’ and ‘Regina’, grafted on Gisella 5 rootstock. Flowers were collected in April, before
Results and Discussion

Pollen germinability in the four cherry varieties tested under pedoclimatic conditions of Cluj-Napoca was different. The viability rate varied from 18.7\% to 80.1\%. The highest percentage of viability was recorded in ‘Regina’ variety while the lowest percentage of viability was observed in ‘Sylvia’ variety (Tab. 1).

In trees where no treatments have been applied, a low percentage of germination can be observed which leads to a low percentage of fruit binding, thus affecting fruit production.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Germinability percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GerLapins with treatment</td>
<td>69.3%</td>
</tr>
<tr>
<td>Lapins without treatment</td>
<td>24.1%</td>
</tr>
<tr>
<td>Kordia with treatment</td>
<td>58.1%</td>
</tr>
<tr>
<td>Kordia without treatment</td>
<td>32.5%</td>
</tr>
<tr>
<td>Sylvia with treatment</td>
<td>32.6%</td>
</tr>
<tr>
<td>Sylvia without treatment</td>
<td>18.7%</td>
</tr>
<tr>
<td>Regina with treatment</td>
<td>80.1%</td>
</tr>
<tr>
<td>Regina without treatment</td>
<td>27.8%</td>
</tr>
</tbody>
</table>

Figure 1. Pollen grain germination of ‘Regina’ cherry cultivars with treatment (a) and without (b) treatment (source: original), microscope magnification 10X

Figure 2. Pollen grains germination of ‘Sylvia’ cherry cultivars with treatment (a) and without (b) treatment, (source: original), microscope magnification 10X
Conclusion

The results of the present experimental work have led to the conclusion that environmental conditions and applied treatments (urea and CROPAID) affected positively pollen germination capacity. As consequence of the treatments applied, both the germination percentage and the fruit binding percentage had higher values.

References