The Prevalence of *Pseudomonas Aeruginosa* Strains in Infants With Cystic Fibrosis in a Hospital from North Easter Romania

Oana – Alexandra CIOCAN (MOŢCO)¹*, Alper ÇIFTÇI², Mihai CARP – CĂRARE¹, Mihai MAREŞ¹, Eleonora GUGUIANU¹, Ioana CRIVEI¹, Carmen – Valentina PANZARU³, Cătălin CARP – CĂRARE¹

¹Faculty of Veterinary Medicine, Iasi
²University of Medicine and Pharmacy Iasi
³University of Ondokuz May’s, Faculty of Veterinary Medicine, Department of Microbiology, Turkey
*corresponding author: veterinarians_phd@yahoo.com

Abstract

Cystic fibrosis (CF) is the most common autosomal recessive genetic disease caused by mutation of the CFTR gene. In Romania, CF disease has an estimated prevalence of 1 case per 2500 live births. Approximately 50% of children die in early life, so the exact number of CF patients in our country remains unknown as no national patient registry exists. This situation has limited our knowledge about the disease progression. Complicated with *P. aeruginosa* leads to long progressive diseases and often aggravates morbidity and mortality.

The aim of the study was to phenotypically identify the *P. aeruginosa* strains, according to their antibiotic susceptibility profile in order to administer more precisely the antibiotics and to avoid development of multidrug-resistant strains.

After the diagnosis of CF, the patients return to a medical control at every 3 months. The sputum samples are collected from these patients, in order to perform the bacteriological examination and the DST test. This study was performed during 1 year (01.01-31.12.2015), and all the sputum samples were cultivated on usual and on special culture media to establish more precisely the type of isolated bacteria. The confirmation was performed using the API 20 NE biochemical test and classified in resistance phenotypes according to CLSI 2015 standards.

The study population was represented by 85 infants with CF, from which we isolated 364 bacterial strains. 10.16% of the total bacterial strains were represented by *P. aeruginosa*.

A major problem represents the repeated antibiotic treatments, this being favourable for the emergence of resistant strains. Antibiotic resistance is currently one of the most important problems faced by clinicians (Moskowitz *et al.*, 2004). Multidrug-resistant (MDR) strains of *P. aeruginosa* were identified in this study and we highlighted that this strains limits the antimicrobial treatment and is shortening the patient’s life (9).

Keywords: cystic fibrosis, prevalence, *Pseudomonas aeruginosa*

INTRODUCTION

Cystic fibrosis (CF) – the most frequent autosomal recessive disorder of the Caucasian population, is a complex disease. Often, the respiratory tract is the most affected and the lung disease is characterized by chronic infections (positive cultures after 6 months of germ isolation) or recurrent infections, inflammation and development of bronchiectasis (Kirkby *et al.*, 2009)

The lungs of the patients with CF are the home of numerous bacterial infections, *Pseudomonas aeruginosa* being dangerous bacteria detected in
the respiratory tract of these children (Paduraru et al., 2014).

The objective of this study was to identify children with CF and P. aeruginosa infection and to quantify the impact of this infection on their clinical status, the MDR prevalence in these children, as well as the chronic P. aeruginosa MDR infection impact on the lung.

MATERIAL AND METHODS

The prospective study between 1 January 2015 and 31 December 2015 was carried out on a group of 85 children suffering from CF, registered in the records of the hospital. All patients with CF were submitted to the micro-bacteriological test of the aspirate or the sputum for P. aeruginosa. All the sputum samples were cultivated on usual culture media (blood agar, chocolate agar, MacConkey) and on special culture media (selective Pseudomonas Agar CN-Oxoid), PAID media, for establish more precisely the *Pseudomonas aeruginosa*. (Fig. 1.) (Ciocan et al., 2014)

The confirmation was performed using the API 20 NE biochemical test and finally classified in resistance phenotypes according to CLSI 2015 standards. (Fig. 2.)

The resistance of strains was determined by testing sensitiveness to major classes of antibiotics with micro-caplets on the Mueller-Hinton medium at 37°C for 24 hours. (Fig. 3.) (Ciocan et al., 2015)

Criteria for defining MDR, XDR and PDR in *Pseudomonas aeruginosa*: MDR: non-susceptible to 1 agent in 3 antimicrobial categories, XDR: non-susceptible to 1 agent in all but less 2 categories, PDR: non-susceptible to all antimicrobial agents listed (Magiorakos et al., 2011).

RESULTS AND DISCUSSIONS

The study population was represented by 85 infants with CF, from which we isolated 364

Fig. 1. Strains of *Pseudomonas aeruginosa* on diverse cultural media

Fig. 2. Biochemical confirmation of *Pseudomonas aeruginosa* strains

Fig. 3. Disc diffusion method for testing antimicrobial activity
Tab. 1. Antimicrobial categories and agents used to define MDR, XDR and PDR (Magiorakos et al., 2011)

<table>
<thead>
<tr>
<th>Antimicrobial category</th>
<th>Antimicrobial agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin</td>
</tr>
<tr>
<td></td>
<td>Tobramycin</td>
</tr>
<tr>
<td></td>
<td>Amikacin</td>
</tr>
<tr>
<td></td>
<td>Netilmicin</td>
</tr>
<tr>
<td>Antipseudomonal carbapenems</td>
<td>Imipenem</td>
</tr>
<tr>
<td></td>
<td>Meropenem</td>
</tr>
<tr>
<td></td>
<td>Doripenem</td>
</tr>
<tr>
<td>Antipseudomonal cephalosporins</td>
<td>Ceftazidime</td>
</tr>
<tr>
<td></td>
<td>Cefepime</td>
</tr>
<tr>
<td>Antipseudomonal fluoroquinolones</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td></td>
<td>Levofloxacin</td>
</tr>
<tr>
<td>Antipseudomonal penicillins + b-lactamase inhibitors</td>
<td>Ticarcillin-clavulanic acid</td>
</tr>
<tr>
<td></td>
<td>Piperacillin-tazobactam</td>
</tr>
<tr>
<td>Monobactams</td>
<td>Aztreonam</td>
</tr>
<tr>
<td>Phosphonic acids</td>
<td>Fosfomycin</td>
</tr>
<tr>
<td>Polymyxins</td>
<td>Colistin</td>
</tr>
<tr>
<td></td>
<td>Polymyxin B</td>
</tr>
</tbody>
</table>

Fig. 4. Total of bacterial strains isolated from infants with CF

Fig. 5. Graphical representation of age groups
bacterial strains. 10% of the total of bacterial strains were represented by *P. aeruginosa*. (Fig. 4)

Colonization of lung with *Pseudomonas aeruginosa* strains depends on dissimilar number of factors, children from group with 6 years to 10 years are the most likely infected with *Pseudomonas aeruginosa* in this study. (Fig. 5)

MDR microorganisms are an important issue in the care of patients with CF. Each patient infected with such strains should be assessed individually.
and antibiotic treatment administrated according to the results of antibiotic susceptibility. (Fig. 7)

CONCLUSIONS
For a more accurate and rapid isolation we recommend using Pseudomonas culture medium CN Oxoid and for sputum PAID chromogen medium, even if it is more expensive;

In our study, 10% of the total bacterial strains were represented by P. aeruginosa;

Following the results of antibiotic susceptibility in the current study prevailed MDR strains;

Resistance to colistin is low and this antibiotic should be considered as a valuable second-line drug to be used for multidrug-resistant P. aeruginosa;

Treatment of MDR strains is difficult and sometimes without therapeutic success. MDR strains become PDR if antibiotics are not used according to the antimicrobial test. Combined antibiotic therapy is recommended, but the choice of treatment regimen should always be guided by the clinical response of patient’s.

According to the schedule in which age groups are represented, group 6-10 years is the most affected, and boys are more infected than girls;

To check if these parameters are relevant must be checked a much larger number of children and over a longer time interval.

REFERENCES