Microbiological Quality Evaluation of Various Types Of Traditional Romanian Cheese Through Advanced Methods

Alexandra TĂBĂRĂN¹, Sorin Daniel DAN¹*, Oana REGET¹, Darius Victor CORDEA¹ Alina MĂGDAŞ², Marian MIHAIU¹

¹Department of Animal Production and Food Safety, University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, 3-5 Mănăștur Street, 400372, Cluj Napoca, Romania
²National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania

sorin_dan_daniel@yahoo.com

Abstract

Raw milk represents a nutritive environment for a number of pathogens, like Salmonella spp., Escherichia coli O157: H7, Staphylococcus aureus etc. This fact can cause a serious of foodborne outbreaks associated to the consumption of contaminated milk and derivate products. The traditional processing of raw milk in poor hygiene conditions can pose a serious microbiological risk. The study aimed at evaluating the incidence of pathogen bacteria in ripened traditional cheese by advanced biochemical and molecular methods in order to reveal the possible risk of consumer exposure. The study was applied on 150 samples of ripened cheese from the following types: salted teleme cheese and „Burduf” cheese and „Năsal” cheese. The traditional teleme cheese presented an average value of the total E. coli count in between 11.06±0.52-38.33±2.76 CFU/g. The risk represented by the presence of E. coli and Staphylococcus aureus is low within the first steps of ripening, being absent after 28 months of ripening in the teleme cheese samples. The Staphylococcus aureus load was in between 3.82±0.12 log CFU/g for the first period of ripening in „Burduf” cheese and 0.27±0.56 log CFU/g after the second period of maturation, following a descendant pathway towards the last period of ripening. In „Năsal” cheese we isolated the specific Brevibacterium linens, which gives the characteristics of this type of cheese, but also Micrococcus spp., in 35% and lactic streptococci in 20%. The traditional cheese evaluated represent a low risk of contamination given that no sample investigated has exceeded the maximum limits allowed by the legislation and no pathogen bacteria isolated.

Keywords: traditional Romanian cheese, milk, hygienic quality, PCR

INTRODUCTION

Consumer’s demand for safer and higher quality food products is continuously growing on a global scale. For this reason, quality management systems have been developed, so as to monitor constantly the hazard occurrence and prevent possible outbreaks (Sandrou and Arvanitoyannis, 2000). The most dangerous and severe hazards occurring daily in animal origin products such as cheese are the biological ones (Tranter, 1990), the dairy industry increasing constantly the efforts to ensure the quality and safety through the development and implementation of proactive programs such as the HACCP (Ito, 1974).

Cheeses are the most popular dairy products in the entire world, processed under various types and shapes according to country and traditionality (Fox et al., 2000). The world cheese production
has increased, with an annual rate of 4.2% during the last 20 years (FDA, 2001). Researches concerning the food poisoning cases caused by contaminated cheese consumption show that the scarce processing conditions contributes the most to the development of the causative agent (FDA, 2001). Normally when such episodes occur a large number of people are affected. Thus, the application of a strict surveillance within cheese production line can minimize the risk of foodborne illnesses occurrence (Hill, 2000, Temelli et al., 2006).

Unfortunately, the traditional processing of cheese does not comprise these strict surveillance systems, which sometimes make it very difficult to control the occurrence of pathogens. These types of products are a very nutritive environment for numerous pathogens such as Salmonella spp., Escherichia coli O157:H7, Staphylococcus aureus etc. The traditional processing can represent a higher risk of contamination due to poorer hygiene conditions and lack of strict surveillance system. Until now there have been a series of foodborne infection episodes stated to be caused by consumption of contaminated cheese with Salmonella, Campylobacter, Staphylococcus aureus and E. coli O157: H7 (Zottola and Smith, 1991; De Buyser et al., 2001). The aim of this study was to evaluate the incidence of pathogens in ripened cheese obtained in industrial and traditional systems with an emphasis on the risk exposure assessment.

MATERIALS AND METHODS
Sample collection and preparation
The material subjected to research was represented by 150 of ripened telemea cheese products obtained in the industrial system and salted "telemea" cheese obtained in a traditional system. All the samples collected were kept in their original package and kept at 0...4°C until their further analysis. The analysis was made within 48 hours from their reception in the Food safety laboratory of Faculty of Veterinary Medicine Cluj Napoca.

Identification of Staphylococcus spp.
The isolation and identification of Staphylococcus spp. was made according to the current standard protocol (SR EN 6888/2005). Briefly, the specific solid media used was Baird – Parker (Oxoid; Germania) and the incubation made at 37°C for 24 hours. The identification was made by cultural examination, evaluating the colonies’ aspect on the selective media (color, size, shape, aspect and margins) and morphological exam (Gram staining). The representative colonies were subjected to polymerase chain reaction (PCR) confirmation technique.

Identification of E. coli
The isolation and identification of E. coli was made according to the protocol described in the current standard (SR EN 16649-2/2007). Briefly, the solid culture media used was TBX (Triptone Bile X-Gluconoride) (Oxoid; Germania). The incubation was made at 37°C for 24 hours and the confirmation followed the same protocol as for Staphylococcus spp., described in detail above.

PCR method for bacteria genera confirmation
The DNA extraction was made from morphologically confirmed E. coli colonies. The DNA was extracted from approximately 10-12 specific colonies using a specific extraction kit (Isolate II DNA kit, Bioline, Germania) following the protocol described by the producer.

The DNA quantities and purities were evaluated by spectrophotometry, using a Nanodrop ND-1000 apparatus (NanoDrop Technologies, Inc., Wilmington, DE, USA). Each sample was brought to a concentration of 20 ng/µl with elution buffer. The PCR technique was made in a final volume of 25

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequences (5’- 3’)</th>
<th>Size (bp)</th>
<th>T (˚C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>23S</td>
<td>F: AAGGAATCACCTTGCAGATAAAAC</td>
<td>736</td>
<td>56</td>
<td>Malorny et al., 2004</td>
</tr>
<tr>
<td></td>
<td>R: TTTCCGAGTACATTGGCATGCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUC2</td>
<td>F: ATGAAAGTCCTTATAAATTGCT</td>
<td>458</td>
<td>58</td>
<td>Gandra et al., 2011</td>
</tr>
<tr>
<td></td>
<td>R: TTTGGTGACACCTTACTTCTC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1. The primers used for the confirmation of the isolated E.coli and Staphylococcus strains
µL, using the following reagents: MyTaq (Bioline, England) polymerase mix (12.5µL/sample) and 1 µL of Forward/Reverse Primer specific for each bacteria (Table no.1). The amplification was made in a G-Storm thermalcycler (LabTech, England), using 35 temperature cycles as it follows: denaturation 94˚C (1 min.), alignment temperature according to specific primers (Table 1) and elongation at 72˚C (1 min.). The migration of the amplified products was made in an agarose gel of 2.5% concentration stained with EvaGreen DNA dye (1.7µl – 35 ml/gel; 7µl – 140 ml/gel). The electrophoresis was made at 100 V (20 min.) and 70V(40 min). The reading and interpretation was made in a Trans UV imaging system (BioRad, Germany).

Statistical interpretation
Statistical interpretation of data was performed using the operating system Windows 2007, program Origin 8.5.

RESULTS AND DISCUSSION
The results obtained at the bacterial load analysis of telemea cheese obtained in an industrial system

Due to the fact that this type of cheese is practically always covered in brine, it is protected on the surface against bacteria. *E. coli* and *Staphylococcus aureus* are pathogens with high risk on the public health.

For the safety of the telemea cheese sent for consumption it is mandatory to perform analysis on the milk destined for processing (Donnelly, 2004). In conformity with the regulations (Reg, CE 2073/2005, modified by Reg. CE 1441/2007), in case of ripened cheese subjected to thermal treatment, it is mandatory to identify the presence of staphylococci enterotoxin, the *E. coli* load and the number of staphylococci coagulase-positive. Regarding the presence of *E. coli*, we have found in the analyzed samples that only 2 were negative (Fig.1) (samples 7, 14), respectively 7.69%. The rest of the samples have shown an average number in between 8.66±1.52 - 16.33±7.76 CFU/g, values relatively low, which are in accordance with the legislation (Reg. 1441 CE/2007), of maximum 100 CFU/g. Similar values have been obtained by Suler *et al.* (2010), the study mentioning also that the presence of *E. coli* in this type of dairy products is due mainly to poor hygiene conditions along the technological process.

In what concerns the *Staphylococcus* genus, the frequency of positive samples was much lower, 8 samples being negative (20.51%).

The statistics showed an average value of the positive samples in between 1±1.73 and 45.66±6.02 CFU/g, values that are in conformity with the legislation (max. 100 CFU/g) (Fig.2). Given the fact that the coagulase-positive staphylococci load was in between the maximum limit imposed
by the legislation (Reg. 1441 (CE)/2007), we did not test the samples for staphylococci enterotoxin. Similar values were reported by Suler et al. (2010), highlightening values in between 0.48 and 7.08 CFU/g at the same type of dairy products. In contrast, a study made by Duminică (2009), has shown that the ripened telemea cheese holds a high prevalence percent for *E. coli* 56.57% and average for *Staphylococcus* (11.76%).

![Graph 1](image1)

Fig. 1. The representation of *E. coli* contamination in the teleme cheese obtained in a traditional system

![Graph 2](image2)

Fig. 2. The representation of the contamination with coagulase-positive staphylococci in the teleme cheese obtained in the industrial system

![Graph 3](image3)

Fig. 3. The representation of *E. coli* contamination in the teleme cheese obtained in a traditional system
A number of studies have shown high variation within the load of these bacteria according to the ripening stage. For example, Mojsova et al. (2009), has shown that in the fourth day of ripening, the average value of *E. coli* colonies is of 5.3 log CFU/g (200.000 CFU/g), and in the tenth day the value is situated in between 2 and 4.77 log CFU/g. After 90 days of ripening, no bacteria was identified which reveals that the low value of the pH has inhibit the presence of these germs.

The results obtained at the bacterial load analysis of telemea cheese obtained in a traditional system

Regarding the presence of *E. coli* in traditional telemea cheese we found that no sample had a lower value than 10 CFU/g. All samples have shown an average value of the total number of

![Fig. 4](image1.png)

Fig. 4. The representation of contamination with coagulase-positive staphylococci in the teleme cheese obtained in a traditional system

![Fig. 5](image2.png)

Fig. 5. Molecular confirmation of *E. coli* strains isolated from the industrial system „teleme“ cheese; M – ethalon scale (100 bp); 1 – positive control; 2 – negative control; 3 – 9 – positive PCR confirmed samples

![Fig. 6](image3.png)

Fig. 6. The molecular confirmation of the *E. coli* strains isolated from the traditional teleme cheese; M – the ethalon scale (100 bp); 1 – positive control; 2-9 confirmed positive samples
colonies in between 11.06±0.52 and 38.33±2.76 CFU/g, values that are higher than those revealed at the samples collected from the hypermarkets (fig 3).

The high load of *E. coli* in traditional telemea cheese can be attributed to the fact that this type of dairy product is normally processed from raw milk and the technological manufacturing lacks the hygiene conditions.

The *Staphylococcus* showed a lower prevalence, 4 samples being negative. Although the number of negative samples was higher than in *E. coli* case compared to the industrial type of telemea cheese the percentage of negative samples was much lower (13.33% vs. 20.51%). The statistical evaluation has shown an average of *Staphylococcus* load in between 4±1.73 and 23.12 ± 2.02 CFU/g, values that are in conformity with the legislation (max. 100 CFU/g) (Fig. 4). The values obtained in our study were much higher than those reported by Suler et al. (2010), which revealed numbers in between 0.48 and 7.08 ufc/g.

The molecular testing of *E. coli* and *Staphylococcus* strains isolated from telemea cheese

The strains of *E. coli* and Staphylococcus isolated from the ripened cheese samples were molecularly tested for confirmation

All *E. coli* isolated were confirmed also by PCR, being positive at the specific DNA amplification with the common sequence (fig. 5, 6). The PCR protocol tested in this study was implied the identification of the common sequences for *E. coli*, sequence 23S, which has a molecular weight of 736 base pairs.

From the total of 43 ripened telmea cheeses, *E. coli* was confirmed by PCR in 42 samples. This high prevalence (97.57%) is concerning given that other data from field literature states a lower prevalence. For example, Soomro et al. (2002) have only 57%, and Farzan et al. (2012), 30.28%. A similar percent to our was revealed by Paneto et al. (2007) in the traditional Italian ripened cheese. Other types of cheese like cottage, has shown a much lower prevalence (12.9%) (Singh and Prakash, 2008). No sample tested positive at the PCR for *Staphylococcus aureus*.

CONCLUSIONS

Our study shows that traditionally obtained telemea cheese has a higher prevalence for *E. coli* and *Staphylococcus*. This higher load may be due to the particular processing but also to lack of strict hygiene conditions during processing. We recommend a better monitoring of the good manufacturing practices and (GMP) and good hygiene practices (GHP) within this particular processing chain.

ACKNOWLEDGMENT

This paper was published under the frame of the Applied Research Collaborative Projects, PCCA no.153/2014.

REFERENCES

