The Development of an Automated Clean-up for Fat Extracts in the Routine Analysis of Organochlorine Compounds in Fish Meat

Ana-Andreea CIOCA¹, Olaf HEEMKEN² and Marian MIHAIU¹

¹Department of Animal Production and Food Safety, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăștur Street, 400372, Cluj-Napoca, Romania.
²Department of Organic Residues, LAVES - Institute for fish and fishery products, Schleusenstraße 1, 27472, Cuxhaven, Germany.
*corresponding author: anaandreeacioca@yahoo.com

INTRODUCTION

OCs are known to have a profound negative effect on the environment. Ingested by fish, through contaminated feed or other pesticide treatments, they are retained in the adipose tissue and can determine the pollution of fish meat released on the market. The risk for humans is the chronic toxicity, following the ingestion of small quantities of pesticides in food (Aktar et al., 2009). These compounds focus their action on enzyme systems, on vitamins and hormones and have carcinogenic activity (Roncati et al., 2016). Monitoring organochlorine pesticide residues is a current concern in the European Union. Analytical methods for the analysis of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are widely available and are the result of a vast amount of environmental analytical method development and research on persistent organic pollutants (POPs) over the past 30–40 years (Muir et al., 2006). Even so, the analysis of pesticide residues in fish samples is challenging due to the low concentrations and large number of analytes that need to be monitored and quantified in a complex matrix (Kaczyński et al., 2017, Rodrigues et al., 2016). Usually a solvent-based extraction of the sample is required in the first part of the pesticide determination process from which will result contaminants and unwanted matrices. This step is nearly always followed by an appropriate
clean-up step to isolate the target analytes and remove unwanted matrix components (Sørensen et al., 2015). Some clean-up techniques such as the solid phase-extraction (SPE) using Florisil, alumina or silica, require more time and handling. Others such as gel permeation chromatography (GPC) - a subset of exclusion chromatography (SEC) are automated (David et al., 2017). Automated techniques are more likely to improve the productivity of the laboratories from the perspective of time and operational safety. In our case, the availability of a HPLC () instrument made it possible to experiment for the development of an automated clean-up for a small food safety and consumers’ protection laboratory with few employees. Such a method could replace the validated method of SPE using silica gel of the

AIMS AND OBJECTIVES
The aim of the present study was to develop an efficient HPLC clean-up for fat extracts, in the routine analysis of mainly OCs in fish meat for the laboratory of Organic Residues, IFF, Cuxhaven. The objective was to validate a new method and to increase the productivity of the laboratory by replacing the manual labour with automatic means which require less time and surveillance.

MATERIALS AND METHODS
Reagents. N-hexane ROTISOLV® min. 99 % Pestilyse and acetone ROTIPURAN® min. 99,8 % p.a. were purchased from Carl Roth (Germany). Dichloromethane for residue and pesticide analysis was purchased from AppliChem GmbH (Germany). Helium 5.0 and nitrogen 5.0 were purchased from Linde Gas (Germany). Pure certified analytical standards used for external and internal standards came from Sigma-Aldrich (Germany). Fish oil was provided by (San Omega GmbH (Berlin, Germany).

The Gas Chromatography coupled with tandem Mass Spectrometry (GC-MS/MS) instrument used possessed a 700 GC/MS Triple Quadrupole and came from Agilent Technologies (USA). The provider of the HPLC column was Macherey & Nagel (Düren, Germany).

Sample preparation. Three types of experiments were conducted. The first sample consisted in a dilution of the analytes of interest in n-hexane (2:3 ratio). The fractions (F) collected after HPLC clean-up were transferred in separate evaporation flasks. Each flask was evaporated until 1 ml at 40°C and then transferred into 2 ml vials for quantification through Gas Chromatography coupled with tandem Mass Spectrometry (GC-MS/MS). The method applied was previously designed for the compounds taken into study and the software used was MS Quantitative Analysis. The second experiment was conducted on 100 mg fish oil as a fat matrix. We determined the weight of the collection flasks on the analytical scale Sartorius, (Germany) before the clean-up procedure. After the clean-up, we evaporated the solvents from the collection flasks using nitrogen gas. We calculated the differences between the final weight of the collection flasks and the empty flasks. In order to confirm the findings of the two experiments above, a third sample was analysed. Three extracts of native salmon samples obtained after freeze-drying and Accelerated Solvent Extraction (ASE), were spiked with the 50 µl external standard (ESTD) before the HPLC clean-up. The ESTD consisted in the analytes of interest diluted in n-hexane and a concentration of 1 µl/ml. The extracts were spiked with 100 µl internal standard (ISTD) before ASE. The ISTD consisted of a 4, 4’-DDT (D8), Hexachlorobenzene (HCB13C6), Tetrachlornaphthalin (TCN) and PCB 198 at a concentration of 1 µl/ml. After the clean-up, the collection flasks were transferred in one evaporation flask the samples were treated the same as the dilution of analyte of interest in n-hexane (2:3 ratio).

HPLC clean-up. For the HPLC clean-up we used a Nucleosil® 100-7 silica gel particle size 7 column µm, with the dimension: 250 length x 10 mm inner diameter. In order to reproduce the manual steps in our new, automated technique, we have set the next parameters in the ChemStation software of our HPLC system with Diode Array Detection (HPLC-DAD) 1290 Infinity series, Agilent Technologies (USA): injection volume: 500 µl; solvents: n-hexane, dichloromethane and acetone arranged in a non-polar to polar gradient; flow: 6.000 ml/min; stop time: 38 min; thermostat temperature: 20°C between 0-15 min, 40°C between 15-25 min and 20°C between 25-38 min; fraction collector: trigger mode time-based starting min 0 until min 30; time slices of fraction collector: 2 min.
Data analysis. For the quantitation of absolute recoveries a four point calibration curve was prepared from the target analytes within the range 10-100 ng mL⁻¹. These curves presented a good linearity (R^2 for all curves were <0.999). A good reproducibility of the samples (spiked at level 50 ng g⁻¹) was achieved through similar recoveries of the replicates (n=9 ASE extracts of fish samples) for each compound taken into study and standard deviations below 12%. LOD was in the range of 1-6 ng g⁻¹ and 24-43 ng g⁻¹ for Octachlostyrol, DDE o.p, DDE p.p., and LOQ 3-18 ng g⁻¹, respectively 72-138 ng g⁻¹.
RESULTS AND DISCUSSIONS

The first experiment conducted, revealed that the analytes of interest elute from min 2, F2, until min 10, F5. The elution took place under a non-polar solvent gradient, consisting of a higher percentage of n-hexane and a lower percentage of dichloromethane. No compounds eluted between min 0-2, in F1 and nor between min 10-14, F5-F6. In the second experiment, the fat elution started at min 14, F7 and ended at min 26, F12. Numerous attempts showed an approx. 100% recovery of fat. In this time frame, the gradient moved from non-polar to relative polar and polar solvents, namely dichloromethane and acetone. Considering the experiments above, the method was modified for the third experiment. Fractions were collected only from min 2, F2 until min 11, 1/2 F10. The time slices were changed to 3 min, so the clean-up ended with 3 fractions. The method continued until minute 38, with fat being sent directly into the waste container and out of the HPLC instrument. From min 24 until min 38, the instrument was able to return to the initial conditions of the method (Fig.1.). The spiked fish oil samples salmon extracts revealed recoveries of the analytes of interest in the range of 25-85 %. Almost no values were recorded for Endosulfan beta and Endrine Ketone. The measurements made on spiked ASE salmon extracts showed recoveries in the range of 23-108 %. Besides confirming the low recoveries obtained by Endosulfan beta and Endrine Ketone, another compound has to be eliminated from the method. Endosulfansulfat has not been detected during measurement. Systematical errors or sample handling could be the reason of these problems. Even if the overall recoveries were not the ideal ones, the originality of this new clean-up protocol remains based on the concept that this method used automated, free and already present means of the laboratory. Even though numerous studies from literature describe other validated clean-up protocols with better recoveries of organochlorine pesticides (Chen et al., 2009, Rodrigues et al., 2016, etc, Thompson et al., 1989, etc), in our case, finding a proper alternative for the SPE using deactivated silica gel clean-up with a minimum of financial investments was desirable.

CONCLUSION

An automated HPLC clean-up was developed, efficiently separating the OCs, PCBs, chlorobenzenes compounds and one dioxin (2,3,7,8-TCDD) taken into study. The result is a purified extract ready for GC-MS/MS quantification. Compounds such as Endosulfan beta, Endosulfansulfat and Endrine Ketone require more investigations. In this stage the method requires an optimization of the overall analytes recoveries, reduction of process time and solvent consumption.

Acknowledgement. We gratefully acknowledge the financial support from the German Federal Environment Foundation (DBU Osnabrück).

REFERENCES