Growth Dynamics of Three Trout Species (Onchorhynchus mykiss, Salvelinus fontinalis and Salvelinus alpinus), in Accordance with Environmental Parameters

Daniel COCAN*, Vioara MIREȘAN, Alexandru SAVA, Camelia RĂDUCU, Radu CONSTANTINESCU, AndraIHUȚ, Aurelia COROIAN, Luisa ANDRONIE

Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania

*Corresponding author, email: cocandaniel@yahoo.com

Abstract

In the context of increase the fish farms productivity and diversification of aquaculture products, have been evaluated the growth dynamics of three species of trout: rainbow trout (Onchorhynchus mykiss), brook trout (Salvelinus fontinalis) and arctic charr (Salvelinus alpinus). All three species of trout were grown in Trecătoarea Ursului trout farm, Brașov County and have benefited from the same environmental parameters and the same feeding conditions. The growth dynamics of rainbow trout was significantly higher, compared to the other two species. This is the result of domestication and improvement of rainbow trout, as well as its genetic characters. The lower growth dynamics of brook trout and arctic charr increase the production price, this aspect having directly implications on the selling price.

Keywords: trout species, growth dynamics, environmental parameters

Introduction. In time and space, interactions between genotype and environment, led to the most varied and amazing adaptations. For fish life, for growth and development, the primary goal of farming systems is all water features, including the biological and physiochemical characteristics. Environmental parameters of water have a different influence in growth dynamics of various species of trout (Moogouei et al., 2010; Blair et al., 2013).

Aims and objectives. According with the environmental parameters of water from "Trecătoarea Ursului" trout farm, we wanted to determine the growth dynamics of three species of trout (Onchorhynchus mykiss, Salvelinus fontinalis and Salvelinus alpinus), these having different environmental requirements.

Materials and methods. All three trout species studied are usually reared in "Trecătoarea Ursului" trout farm and benefit from the same environmental parameters. Feeding frequency and feed used are the same. During the production cycles, from each species were monitored and measured 100 trout. Growth dynamics was determined based on the growth indices (total gain TG and daily growth gain DGG).

Results and discussion. Water temperature in "Trecătoarea Ursului" trout farm, does not exceed 13°C (August 2013), the minimum recorded for the same year was 1.5°C. Mean water temperature for 2013 was 6.25°C (Tab. 1). These values are at the lower limit in terms of the biological requirements of rainbow trout (Moogouei et al., 2010), but at the same time, are optimal for raising trout from the Salvelinus genus.

In condition of these trout farm, to reach at commercial size, rainbow trout (Onchorhynchus mykiss) needs 14 months, brook trout (Salvelinus
fontinalis) needs 16 months, and arctic char (Salvelinus alpinus) needs 24 months (Fig. 1).

Regarding the total gain, it was 266.65 g in rainbow trout; brook trout – 271.26 g; and for alpine trout – 252.38 g. Daily growth gain recorded in the three trout species was as follows: rainbow trout = 0.6348 g; brook trout = 0.5651 g; arctic char = 0.3505 g (Tab. 2).

Conclusion. Rainbow trout demonstrates a great plasticity compared with other two species. This species had the best growth dynamics, regardless of environmental conditions.

REFERENCES
