THE EFFECT OF SOME FACTORS ON THE MILK MAIN COMPONENTS

Rebrișorean Ada, Olezia Cadar, C. Velea

University of Agricultural Sciences and Veterinary Medicine, Faculty of Animal Science and Biotechnologies, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania

Key words: milk, lactation, Bălţată românească, genetic potential

Abstract. The paper emphasizes the results of the research performed on 317 Bălţată românească cows, from six private exploitations located in the central part of the country. The main qualitative and quantitative traits of the milk production, season and familial structures (half sisters by father) effect were recorded in dynamics by four lactations on the above mentioned effective. The research concerning the evolution of some traits of the quantitative and qualitative milk production in dynamics by lactation, reveals many aspects, which in all cases equally reflects both the genetic potential of the biological material that can be expressed and putting into practice of the rearing and exploitation technologies. Concerning the quantitative milk production, by normal and total lactation an almost plane curve is described (table 1, figure 1). This aspect was also reported for the collecting areas and farms (tables 2 and 3). Concerning the season effect, it is observed function of the adopted technology of exploitation that for effectives is significantly observed only in summer (table 4). In last part of the paper, the main traits of the milk production in 16 familial structures of primiparous half sisters by father, classified function of the quantity of fat and protein accumulation by normal lactation are emphasized (table 5.1-5.2.). The obtained results are concluding.

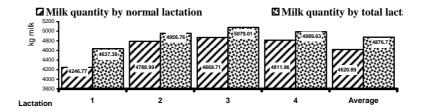
INTRODUCTION

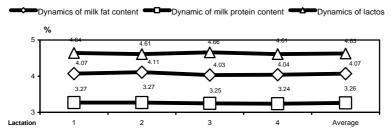
The main physico-chemical and bacteriological traits of the milk represent the traits which define its feeding value, but in the mean time, they are under polyfactorial influence. In this context, our intention is to approach the scientific basis of this problem in order to establish the effect of some influence factors on phenotypic traits milk production in cattle and we present them by functional groups.

MATERIAL AND METHODS

The research aimed 317 Bălţată românească cows from six private farms located in the central part of our country. On the above mentioned effective, the main quantitative and qualitative traits of the dairy production were recorded in dynamics by 4 lactations and within them by control time interval (28 days each). The results were statistically processed and presented in tables and graphics. In this context, the results were structured by three groups of factors, and in this paper we present the effect of the lactation, season and familial structures (paternal half sisters).

RESULTS AND DISCUSSIONS


The research concerning the evolution of some quantitative and qualitative traits of the dairy production in dynamics by lactations reveal several aspects which in all cases equally reflect on one had the expressed genetic potential of the biological material and on the other hand the adopted rearing and exploitation technology. Among the reproduction indices, we


mention the age of the first calving, which even we consider acceptable is with 12.8 % higher compared to the optimal age, duration of calving interval, respectively, which corresponds to an average natality index of more than 94 %. Concerning the quantitative milk production, for both normal and total lactation, it describes an almost plate curve (fig. 1). This aspect is clearer if we consider several interrelations in dynamics, by lactation, as follows:

the constant several invertenances in a finances, of incomment, as foliows.										
Issue	UM	Lact.I	Lact.II	Lact.III	Lact.IV	Tot.lact.				
a. Production compared to maximum lactation										
By total lactation	%	91.30	97.65	100	98.24					
On normal lactation	%									
b. Difference of some traits between normal and total lactation										
- duration of lactation	%	12.29	5.96	5.14	5.37	7.92				
-prod. of milk quantity	%	9.20	3.50	4.30	3.69	5.54				
2. Average daily dairy production										
-by total lactation	kg	14.11	16.45	16.65	16.08	15.58				
-by normal lactation	kg	14.51	16.84	16.78	16.34	15.94				
-by dif.d.l.t d.l.n.	kg	10.85	11.18	13.95	11.12	11.12				

Table 1
The main quantitative and qualitative traits of the dairy production in dynamics by lactations

TF 14	T T /A 4		AMED ACE/TOTAL			
Trait	U/M	1	2	3	4	AVERAGE/TOTAL
	head		265	197	131	910
		ACTATION (V.I				
D.L.T.	days		301.26±3.02	305.07±3.19	310.23±3.76	312.91±2.25
R.M.	days	71.60±5.11	78.97±6.22	76.83±4.48	ı	75.43±5.06
C.I.	days	ı	396.25±4.03	380.97±4.11	382.43±9.37	388.12±7.58
Milk quantity	kg	4637.39±93.17	4956.76±81.12	5079.01±117.14	4989.63±128.62	4876.70±42.85
Fat quantity	kg	188.75±2.60	203.57±2.82	204.93±4.23	201.50±4.18	198.40±2.72
Fat content	%	4.07±0.01	4.11±0.01	4.03±0.01	4.04±0.02	4.07±0.01
Protein quantity	kg	151.44±2.11	162.02±2.57	165.03±3.61	161.88±3.38	158.97±2.11
Protein content	%	3.27±0.01	3.27±0.01	3.25±0.01	3.24±0.01	3.26±0.01
Lactose quantity	kg	215.02±2.96	228.53±3.32	236.95±4.22	230.04±5.63	225.86±1.97
Lactose content	%	4.64±0.01	4.61±0.01	4.66±0.01	4.61±0.02	4.63±0.01
B NORM	IAL I	LACTATION				
D.L.N.	days	292.67±1.28	284.31±1.91	290.16±2.23	294.41±2.05	289.94±0.92
Milk quantity	kg	4246.77±46.50	4788.99±69.15	4869.71±110.14	4811.96±120.15	4620.89±38.89
Fat quantity	kg	171.80±2.03	194.94±2.83	195.39±3.97	193.76±4.65	186.81±3.05
Fat content	%	4.06±0.01	4.07±0.01	4.01±0.01	4.03±0.02	4.04±0.01
Protein quantity	kg	137.91±1.58	155.89±2.13	158.02±3.17	155.75±3.86	150.07±1.42
Protein content	%	3.25±0.01	3.26±0.01	3.24±0.01	3.24±0.02	3.25±0.01
Lactose quantity	kg	196.69±2.32	220.18±3.18	226.46±5.17	220.57±5.89	213.41±3.02
Lactose content	%	4.63±0.01	4.60±0.01	4.65±0.02	4.58±0.02	4.62±0.02

F.1 Dynamic some indices of dairy production by lactation

We notice that the same aspects were recorded in structure of the farms by provenience area (table 2) of each farm (table 3). Between them, significant differences concerning the qualitative and quantitative traits of the dairy production were recorded, but their character and evolution are almost identical.

The seasonal effect on the main traits of the dairy production are very numerous and reveal that this factor has an inverse proportional impact with the improvement level of the biological material and degree of intensifying of the exploitation technology. This aspect is also revealed by our research (table 3). Thus, the seasonal effects are manifest under the aspect of reproduction activities, especially, production performances in summer, with significant differences compared to the other seasons. Generally, the weaker production performances during summer were especially determined by the feeding level and technology.

Table 4 The seasonal effect on some dairy production indices in primiparous (by normal lactation)

Issue	MU	Winter	Spring	Summer	Autumn	
n	Cap.	84	107	65	61	
	%	26.50	33.75	20.50	19.25	
Milk	Kg	4882.27±56.18	4632.39±73.28	4232.73±115.63	4673.42±111.44	
Fat	%	4.02±0.01	3.99±0.01	3.96±0.02	3.98±0.02	
	Kg	196.27±2.31	184.83±3.11	167.62±3.98	186.00±2.37	
Protein	%	3.35±0.01	3.34±0.01	3.31±0.02	3.32±0.02	
	Kg	163.56±3.98	154.72±2.54	140.10±2.38	155.16±3.25	
Lactose	%	4.66±0.01	4.65±0.01	4.64±0.01	4.65±0.01	
	Kg	227.51±2.35	215.41±3.23	196.40±3.19	217.31±3.28	
Reproduction in	dices					
R.M.	R.M. days		75.31±1.02 76.28±		75.75±1.37	
C.I.	.I. days 423.06±1.51		425.72±1.41	427.32±	425.09±1.78	
S.P.	days	137.55±1.53	140.25±1.33	142.52±	139.43±1.81	
I.N.	%	86.28	85.57	85.42	85.88	

The identification of the effect of the familial structures of paternal half sisters was performed on a total effective of 496 primiparous, offspring of 16 bulls (table 5.1- 5.2.). The results emphasized the significant differences of the main quantitative and qualitative traits of the dairy production. Among these we mention as maximal values the age of the first calving (27.22 %), milk production by normal lactation (59.12 %) and cumulated quantity of fat and protein (61.09 %), trait function of which we performed the hierarchy of the familial structures of paternal half sisters. These results are in a great measure determined by the farms, and applied rearing and exploitation technologies.

The effect of this factor is very significant and conclusive.

 $\begin{tabular}{ll} Table 5.1 \\ The main dairy production indices in primiparous groups of paternal half sisters \\ \end{tabular}$

No.	Code	DAUG	VPF		Da	iry produ	ction by to	tal lactat	ion		
crt.	of	HTERS	days	DL	Milk	F	at	Protein		Lac	ctose
	bull	n		(days)	production	%	Kg	%	Kg	%	Kg
1	51263	25	845.18	324.18	5725.17	3.98	227.86	3.25	186.07	4.60	263.36
1	31203	23	± 28.76	±12.53	±167.57	±0.05	±8.17	±0.05	±7.9	±0.06	±10.05
2	51244	15	922.14	341.54	6146.23	3.97	244.01	3.21	197.29	4.58	281.50
	31244	13	±13.60	±26.55	±298.42	±0.07	±6.83	±0.08	±8.64	±0.07	±9.24
			922.08	343.72	5735.42	3.99	228.84	3.24	185.83	4.55	260.96
3	51638	21	±36.16	±19.17	±285.36	±0.06	±10.23	±0.07	±6.67	± 0.00	±8.41
										4	
4	51263	40	968.60	323.19	5184.78	4.07	210.76	3.27	169.39	4.62	239.49
-	31203	40	±12.44	±10.43	±139.26	±0.03	±5.24	±0.02	±5.01	±0.04	±7.66
5	51635	26	946.41	332.69	5237.71	3.99	209.03	3.22	168.86	4.60	240.83
	31033	20	±14.29	±11.45	±169.32	±0.03	±8.46	±0.03	±7.36	±0.03	±4.98
6	45145	28	961.14	330.36	4791.71	4.16	199.05	3.45	169.63	4.64	222.34
U	73173	20	±20.82	±11.53	±199.31	±0.04	±8.46	±0.04	±7.65	±0.02	±6.78
7	50946	40	953.95	340.24	4779.74	4.18	198.74	3.56	170.00	4.58	218.91
,	30740	40	±12.35	±10.60	±157.43	±0.06	±6.65	±0.03	±5.23	±0.03	±5.13
8	50817	42	997.27	358.88	5397.21	3.77	203.56	3.24	174.87	459	247.73
0	30017	72	±13.62	±11.51	±197.09	±0.05	±7.93	±0.06	±9.14	±0.03	±4.67
9	50944	39	932.26	353.87	4963.76	4.03	200.52	3.57	177.21	4.53	224.86
	30744	37	±14.19	±14.39	±198.07	±0.05	±9.78	±0.04	±10.49	±0.03	±5.37
10	50945	36	930.03	327.66	4505.35	4.32	193.39	3.59	165.74	4.63	208.60
10	30743	30	±15.28	±11.52	±176.30	±0.07	±8.17	±0.02	±6.83	±0.02	±5.83
11	51265	28	920.32	321.55	4828.44	4.18	201.86	3.38	163.20	4.68	225.97
	31203	20	±27.44	±15.27	±165.41	±0.04	±6.87	±0.03	±8.64	±0.02	±9.12
12	50943	38	948.76	349.11	4585.54	4.29	169.51	3.60	165.03	4.62	211.85
	30743	30	±20.65	±11.33	±158.54	±0.06	±7.15	±0.03	±0.3	±0.03	±6.33
13	51576	20	912.72	316.48	4603.38	3.90	179.53	3.20	147.31	4.56	209.91
	31370	20	±21.16	±16.17	±235.11	±0.11	±8.68	±0.07	±6.42	±0.04	±7.47
14	51260	18	981.36	328.11	4032.52	4.20	169.37	3.31	133.48	4.51	181.87
	31200	10	±23.24	±11.89	±149.45	±0.02	±6.97	±0.03	±6.32	±0.03	±8.67
15	50788	45	950.60	324.40	4152.85	3.76	165.82	2.85	118.36	4.58	190.20
	20700	7.7	±18.42	±9.75	±170.36	±0.02	±6.26	±0.02	±4.93	±0.04	±5.66
16	50987	55	1075.14	346.61	3886.57	3.94	151.23	3.26	120.11	4.58	175.42
	30707	33	±38.26	±9.22	±143.45	±0.01	±6.11	±0.02	±4.18	±0.02	±5.09

Table 5.2 The main dairy production indices in primiparous groups of paternal half sisters

No.	Dairy production by normal lactation								Reproduction indices	
crt.	DL	Milk	F	at	Dro	Protein		Lactose		C.I.
	(days)	production % Kg		%	Kg	%	Kg	R.M (days)	(days)	
	287.99	5515.78	3.96	218.42	3.25	179.26	4.60	253.73	57.52	387.17
1	±4.37	±172.74	±0.05	±4.63	±0.05	±5.96	±0.06	±8.21	±17.12	±11.81
	299.98	5363.43	3.95	211.86	3.20	171.63	4.58	245.65	55.72	401.27
2	±9.54	±217.35	±0.08	±5.54	±0.05	±8.36	±0.06	±10.24	±12.46	±18.33
	297.18	5306.37	3.97	210.66	3.22	170.87	4.54	240.91	54.22	399.74
3	±8.22	±232.73	±0.06	±4.27	±0.06	±9.01	±0.06	±7.48	±12.53	±10.97
4	291.01	4864.08	4.04	196.75	3.27	159.11	4.62	224.92	70.49	396.72
4	± 2.81	±120.19	±0.03	±4.37	±0.02	±4.90	±0.04	±7.42	±12.28	±14.93
_	296.75	4929.20	3.97	195.84	3.21	158.26	4.61	227.19	66.96	400.32
5	± 2.64	±147.18	±0.03	±7.81	±0.03	±7.85	±0.04	±4.19	±16.94	±18.47
-	295.96	4473.35	4.14	184.63	3.52	157.46	4.63	207.12	69.88	402.18
6	±3.31	±133.88	± 0.04	±5.20	± 0.04	±4.93	± 0.05	±4.79	±15.38	±15.22
7	297.51	4407.61	4.14	181.62	3.55	156.47	4.59	202.31	70.12	408.78
/	± 2.59	±116.70	± 0.01	±4.75	±0.03	±4.23	± 0.04	±4.53	±10.44	±19.15
8	299.38	4802.96	3.76	179.90	3.19	153.21	4.58	219.98	69.38	401.05
0	±2.12	±123.33	±0.05	±4.71	±0.04	±4.83	±0.04	±4.97	±8.67	±11.34
	296.66	4397.86	3.98	174.76	3.50	153.93	4.55	200.10	69.94	404.32
9	±2.89	±142.34	±0.04	±4.83	±0.04	±4.74	±0.04	±4098	±11.31	±12.28
10	291.11	4148.02	4.28	176.32	3.56	147.67	4.61	191.22	71.44	398.98
10	±4.20	±145.00	±0.05	±5.11	±0.03	±4.21	±0.05	±4.73	V9.15	±18.22
11	287.81	4263.82	4.16	177.37	3.39	144.54	4.68	199.55	79.42	401.87
	±2.87	±128.17	±0.05	±6.27	±0.03	±6.22	±0.03	±7.29	±6.47	±18.15
12	297.22	4101.20	4.26	174.19	3.56	146.00	4.62	189.48	66.38	410.22
	±2.37	±108.74	±0.06	±4.66	±0.03	±4.13	±0.05	±5.12	±10.11	±14.23
13	292.16	4332.44	3.69	159.87	3.20	138.64	4.54	196.69	72.17	392.65
	±8.86	±222.12	±0.08	±4.27	±0.07	±8.36	±0.04	±8.74	±13.29	±27.43
14	296.31	3740.72	4.18	156.36	3.30	123.44	4.53	169.45	76.46	405.22
	±2.71	±93.74	±0.03	±2.73	±0.02	±8.47	±0.02	±10.26	±7.32	±15.64
15	291.26	3830.30	3.74	142.73	2.85	109.16	4.59	175.81	70.12	403.18
1.5	±2.52	±132.23	±0.03	±4.37	±0.02	±3.92	±0.04	±6.55	±9.11	±13.41
16	294.16	3466.34	3.93	136.01	3.17	110.86	4.59	159.11	71.12	415.11
	±2.53	±103.97	±0.01	V4.29	±0.02	±3.94	±0.02	±4.28	±15.17	±23.15

CONCLUSIONS

In the context of the above mentioned results of our research, the conclusions were revealed during the presentation, but we underline the expressed genetic potential of production and adopted technology of exploitation, mentioning that such studies are necessary in any rearing farm, which take into consideration the modality of using the biological material by production destinations.

BIBLIOGRAPHY

- 1. Velea C. și col., 2001, Cercetări privind efectivele de taurine și mărimea exploatațiilor în județele din centrul și nord-vestul țării. Simp. USAMV București,.
- 2. Velea C. și col., 1988, Posibilități de optimizare a mărimii fermelor de exploatare a vacilor de lapte în Transilvania. Simp. Actualitate în tehnologia animalelor domestice. I.A. Cluj-Napoca,.
- 3. Velea C. şi col., 2002, Research concerning the planning and achievement of valuable lines and families of cattle in central and north-western Romania. Bul. USAMV Cluj-Napoca, vol. 57,

- 4. Velea C., Mărgineanu Gh., 2004, Producția, reproducția și ameliorarea taurinelor. Ed. Tehnică Agricolă București, vol III,.
- 5. Velea C., Olezia Cadar, 2005, Der einfluss emiger faktoren auf die wchtig sten bestand teile der Kuchmilch. Lucr. St. Vol XXXVIII, USAMV, Timişoara,
- 6. Velea C., Olezia Cadar, 2005, Recherches concetring PTE main quantitative and qualitative traits of milk producțion in Romainian Spotted Cattle population. Bul. USAMV, Cluj-Napoca, vol 61
- 7. Velea C., Olezia Cadar, Maria Pop, 2008, Evoluția principalelor însuşiri ale producției de lapte pe controale în dinamică pe lactații. The evolution of the main traits of milk production by controls and dynamic by lactation.Bul. Şt. LXI, USAMV, Timişoara,
- 8. Velea C., Olezia Cadar, Maria Pop, 2008, Indici ai producției cantitative și calitative de lapte în faza maximă a curbei de lactație. Indices for the quantitative and qualitative milk prodtion during the maximal phase of the lactation curve.Bul. Şt. LXI, USAMV, Timișoara,
- 9. Velea C., şi col., 2001, The main zoo-economical traits of romanian spotted cattle, breeding direction and objectives. Simp. USAMV Cluj-Napoca
- 10. Velea C., 1999-2000, Producția, reproducția și ameliorarea taurinelor. Ed. Tehnică Agricolă București, vol I , III. III...
- 11. Velea C., și col., 2003, Principalii indici zooeconomici a unor crescătorii de taurine pentru producția de lapte din zona de centru a țării în funcție de mărimea lor. Simp. "Resurse de mediu și dezvoltare durabilă, Univ. de Mediu Oradea
- 12. Velea, C., 2003, Actualitate și perspectivă în creșterea taurinelor în zona de centru și nord vest a țării. Simp. USAMV Cluj Napoca, vol. 58.