MORUS SPP. Material Conservation and Characterization and its Importance for Romanian Sericulture and GCEARS-PSP Development- A Review

Adela Ramona MOISE¹, Liviu Alexandru MARGHITAS¹, Otilia BOBIS², Florina Maria COPACIU³ and Daniel Severus DEZMIREAN¹*

¹Department of Apiculture and Sericulture, University of Agricultural Science and Veterinary Medicine Cluj-Napoca
²Life Sciences Institute “King Michael I” of Romania, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca
³Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca
*corresponding author: ddezuirean@usamvcluj.ro

Bulletin UASVM Animal Science and Biotechnologies 75(2)/ 2018
Print ISSN 1843-5262; Electronic ISSN 1843-536X
DOI:10.15835/buasvmcn-asb: 2018.0001

Abstract

Morus spp. is a perennial and woody plant, belonging to Moraceae family, genus Morus and is essential for sericulture. One of the main aims of Global Centre of Excellence for Advance Research in Sericulture and Promotion of Silk Production (GCEARS-PSP) is to create a reserve of Morus spp., to multiply the vegetal material and to provide it to farmers and also to create an important biotechnological support for further scientifically works. As in Romania the intensive plantations are almost non-existent, one of the main objective of the centre is to create a real base for sericulture revival (the existence of nutritional base for silkworms) and to develop the biotechnological scientific component of the centre.

The aims of this review are to create a clear overview of moriculture for sericulture and to reveal the biotechnological potential and pharmacological uses of different mulberry parts. In this review the major findings regarding description of Kokuso 21 variety, mulberry micropropagation and bioactive compounds of different vegetal parts from Mulberry spp. are presented, and represent only the first stage of the GCEARS-PSP activity.

Keywords: GCEARS-PSP, mulberry, conservation, bioactive

INTRODUCTION

Global Centre of Excellence for Advance Research in Sericulture and Promotion of Silk Production (GCEARS-PSP) (www.usamvcluj.ro/crcas-ppm) is located in UASVM CN and it is recognised by the International Sericulture Commission (http://www.inserco.org/) since 2014. The centre was created in order to achieve development of advanced research in sericulture and moriculture, to offer diagnostic services using modern techniques, to maintain and reproduce the gene pool of Romanian and foreign silkworm’s breeds and to promote the silk production.

Working in close collaboration with Laboratory of Bee’s Products Control – APHIS, the GCEARS-PSP researches regards the biotechnological aspects of Morus spp. The most popular species of mulberry are Morus alba and Morus nigra, and Yongkang (2000) states that the intensive selection and mutation breedings have resulted in thousands of cultivars, hybrids and polyploids. Mulberry trees are valuable species not only for silkworm rearing, but also for gardening and landscaping, street shade and reduction of pollution level in the environment and soil (Rafati et al, 2011).

The purpose of the present review is to create a realistic image of the main GCEARS-PSP activities in the past and in the future regarding the moriculture.
As it was stated by literature, the components of mulberry trees exhibiting their biological activity in the various pathological and health human ailments. Our research team want to draw the attention that mulberry is a source of potential indigenous nutraceuticals and functional food.

Description of Kokuso 21 variety

One of the main achievements of GCEARS-PSP in 2017 was to set up a mulberry plantation in UASVM CN. This plantation was necessary for providing the vegetal material as food for the silkworms that the Department of Apiculture and Sericulture owns and material for the further biotechnological researches in moriculture (i.e., in vitro micropropagation, the extraction of biological active compounds, etc.). The mulberry from Kokuso 21 variety was purchased from Sericulture and Agriculture Experiment Station Vratza (Bulgaria) (http://ses-vratza.bacsa-silk.org), accompanied by phytosanitary certificate. The Sericulture Experiment Station (SES) in Vratza collects, characterizes and evaluates both indigenous and exotic mulberry varieties. Currently more than 140 mulberry accessions are maintained in the germplasm at SES-Vratza (Tzenov, 2002, cited by Weiguo, 2011). A number of 570 saplings were planted on 0.12 ha. Kokuso 21 (Morus latifolia) has Japanese origins; it derives from the crossing between Naganua, Gariin and Shiso varieties and it is a bisexual variety.

In intensive type plantations it can produce from the first years a high quantity of leaves with high protein content. Kokuso 21 has a good development with long branches, large unlobed (23 cm x 17 cm), thick and juicy nutritive leaves with slow withering. Leaves yield under rain fed conditions is higher than 15 000 kg/ha (http://ses-vratza.bacsa-silk.org/en/chernichevi-fidanki).

FAO Electronic Conference on Mulberry for Animal Production (Morus1-L) states that “Ichinose” and “Kokuso 21” varieties have been used as parents for other varieties. One of the major reasons why “Ichinose” and “Kokuso 21” have been selected as parents is that “Ichinose” is female and “Kokuso 21” is male. They have desirable traits, and crossing is easy and simple.

Fertilization of M. alba Kokuso 21 with 120 kg N/ha applied in a large study described by Papanastasis et al. (1995) was found very effective in increasing the production of this shrub.

Dolis et al. (2016) reported in leaves a general chemical composition, containing proteins 21.16%, fat 3.54%, crude fibre 17.88%, nitrogen free extract 43.42% and ash content 13.96%.

The biological and productive parameters of Kokuso 21, gived by Tănase (2007) are: number of branches/shrub – 24.6, branches length 115.2 cm, branches thickness 15 cm, internodes length 3.8 cm, leaf surface 292.3 m², leaf weight 6.2 g, leaf production 3.0 kg/shrub/series, leaves water content 75.73% and 25.45% protein content.

Even if the scientifically reports regarding Kokuso 21 variety are pretty poor, the existing studies presents very encouraging data, which made the decision of planting Kokuso 21 variety in our University, very easily.

Mulberry micropropagation

As we state in the introduction one of the goal of GCEARS-PSP is to create a reserve of Morus spp., and this aim will be reached by mulberry micropropagation.

The mulberry (Morus spp) is an important tree in the sericulture industry because its leaves represent the only source of food for Bombyx mori. Qualitative and quantitative improvements in mulberry varieties play a vital role in industrial advances. Unfortunately, the perennial nature of the plants, together with the species prolonged juvenile period, slows this process. Plant tissue-culture techniques have been used extensively for the stock improvement. During the last forty years, several researchers (Chattopadhyay and Datta, 1990; Chitra and Padmaja, 2001; Hossain et al., 1990; Thomas, 2002) have reported success in plant regeneration from different explant types. Mulberry has been micropropagated from many explants sources, such as sooth tips and axillary, isolated, or winter buds. The earliest reports, from Japan, include one from Ohyama (1970), who obtained the first complete plantlets from axillary-bud tissue. The majority of the research has involved in the use of MS (Murashige and Skoog, 1962) media for nodal cuttings, and for culture of axillary and apical buds. Other authors (Sharma and Thope, 1990) observed that an MS medium supplemented with 2.5 µM BSA (bovine serum albumin) was optimum for in vitro-raised seedlings of Morus alba. Their explants exhibited
significant differences in shoot-multiplication rates, and could be stored at 4°C for at least six months without any decrease in vigor. Rooting was enhanced by activated charcoal (0.05-0.10%). Transplantation was 100% successful when the shoots were grown in a 1:1 sand-vermiculite mix in the greenhouse (Pattnaik and Chand, 1997). Thomas (2002) in a review presents the main researched on tissue culture in mulberry.

The success of shoot-culture experiments is highly influenced by the source and age of the explant, as well as the conditions under which it is cultured. Positioning of the explant also plays a crucial role in bud induction (Hossain et al., 1991). The same authors showed that, in the 10 studied genotypes, the maximum response of multiple-shoot induction was obtained from subterminal buds (Hossain et al., 1992). They were able to produce multiple shoots from nodal explants of a 10 year old *Morus leavigata* tree. Shoot proliferation was higher when the BA level was raised to as much as 11 µM, but further increases suppressed development. The highest percentage of explants giving rise to shoots, and the maximum length of those shoots, was observed on MS media supplemented with 4.4 µM BA, whereas the greatest number of shoots per explants was obtained from 11 µM BA.

Paul et al. (2001) described a rapid in vitro-propagation procedure, using for culture young axillaries buds, which were multiplied, rooted and transplanted to soil within 3 months.

When micropropagated plants are compared with those generated through cutting, the former have significantly higher vigor. Zaman et al. (1997) have assessed the field performance and biochemical analyses of both tissue culture-derived plants and plants raised according to conventional methods. Their studies confirmed that micropropagated plants had significantly greater morphogenic vigor. The biochemical analysis of the leaves revealed no significant nutritional difference between the two types.

Survival rates for acclimatized plants varied from 75% in *Morus nigra* (Yadav et al., 1990) up to 90-95% in *Morus nigra* (Jain et al., 1992a, 1992b); *Morus thou*, *Morus cathayana* and *Morus serrata* (Pattnaik and Chand, 1997) and *Morus australis* (Pattnaik et al., 1996). Sharma and Thrope (1990) transplanted *Morus alba* plants with 100% success.

An important progress has been made in mulberry improvement through tissue-culture techniques. Micropropagation procedures are already standardized in various *Morus* species, fact that provides good chances to GCEARS-PSP to realize new mulberry plants.

Anyway, more researches are still needed in the area of haploid and triploid plant production, somatic embryogenesis, etc. The attention should be focused on genetic engineering in mulberry. Judicious choice of the explant source, coupled with some refinements in media composition, should increase the success rate for recalcitrant genotypes. Improvements in regeneration ability and control of somaclonal variation are crucial for maximum exploitation of this genus. When more emphasis is paid to these research areas, the future of sericulture industry will be assured.

Bioactive compounds of different vegetal matrices from *Mulberry spp.*

Mulberry is exclusively used for rearing silkworm due to the presence of unique chemo-factors like morin, β-sitosterol in leaves. Plant is a potential source for curing debilitating diseases. Flavonoids, anthocyanin and alkaloids present in the leaves, bark, root and fruits of mulberry play a pivotal role in containing free radicals and prooxidants generated in the body due to metabolism and phagocytosis (Ramesh et al., 2014).

Morus alba tree bark, fruits, and leaves have been used in conventional and natural medicine (China and India) for the treatment of diabetes, atherosclerosis, hyperlipidemia, hypertension, and more recently, some cancer and neurogenerative diseases (Butt et al., 2008). Mulberry leaves have been used for years to treat hyperglycemia, inflammation, cough, hypertension, cancer and fever (Kang et al., 2006). Because of its good therapeutic activity and low toxicity, *Morus alba* has been extensively used in conventional Chinese medicine (Li, 1998). *Morus alba* is reported to have neuroprotective, skin tonic, antioxidant, anti-hyperglycemic, antibacterial, antihypertensive and anti-hyperlipidemic activities (Nomura et al., 1980). Tables 1-3 present the general chemical composition of mulberry leaves.
Table 1. The average values of the main constituents in mulberry leaves
(According to Flaczyk et al., 2013)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration</th>
<th>Phenolic acids</th>
<th>Concentration</th>
<th>Flavonols</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g/100g</td>
<td></td>
<td>g/100g DW</td>
<td></td>
<td>g/100g DW</td>
</tr>
<tr>
<td>Water</td>
<td>5.2</td>
<td>Gallic</td>
<td>0.02</td>
<td>Rutin</td>
<td>0.91</td>
</tr>
<tr>
<td>Protein</td>
<td>14.70</td>
<td>Protocatechuic</td>
<td>0.16</td>
<td>Quercetin</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-β-D-glucoside</td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>22.37</td>
<td>p-hydroxybenzoic</td>
<td>0.11</td>
<td>Kaempferol</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-β-D-glucopyranoside</td>
<td></td>
</tr>
<tr>
<td>Fat</td>
<td>0.11</td>
<td>Vanillic</td>
<td>0.71</td>
<td>Total Flavonols</td>
<td>1.76</td>
</tr>
<tr>
<td>Succharose</td>
<td>18.62</td>
<td>Chlorogenic</td>
<td>4.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>4.90</td>
<td>Caffeic</td>
<td>2.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fructose</td>
<td>1.61</td>
<td>p-coumaric</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylose</td>
<td>0.85</td>
<td>Ferulic</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galactose</td>
<td>0.27</td>
<td>Sinapic</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Other
| carbohydrates | 17.04 | Total phenolic acids | 9.09 | | |

DW = dry weight

Table 2. Antioxidant compounds and activity of mulberry leaves
(according to Flaczyk et al., 2013)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total phenolics</td>
<td>g gallic acid equivalents/100g DW</td>
<td>14.42</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>mg/100g of DW</td>
<td>1.76</td>
</tr>
<tr>
<td>Antioxidant activity</td>
<td>DPPH (μMol Trolox /g DW)</td>
<td>214.08</td>
</tr>
<tr>
<td></td>
<td>ABTS (μMol Trolox /g DW)</td>
<td>51.76</td>
</tr>
<tr>
<td></td>
<td>Chelating activity (%)</td>
<td>29.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for 0.002g</td>
</tr>
</tbody>
</table>

DW = dry weight

Table 3. Bioactive compounds in mulberry fruits, according to Zhang et al. (2008)

<table>
<thead>
<tr>
<th>Phenolic compound</th>
<th>Concentration</th>
<th>Flavonoid</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocatechuic acid</td>
<td>14.66</td>
<td>Taxifolin</td>
<td>6.53</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>24.72</td>
<td>Rutin</td>
<td>111.38</td>
</tr>
<tr>
<td>4-CQA (CAE)</td>
<td>7.32</td>
<td>Kamepferon-hexoside</td>
<td>20.80</td>
</tr>
<tr>
<td>3,5-diCQA (CAE)</td>
<td>7.99</td>
<td>Quercetin</td>
<td>3.29</td>
</tr>
<tr>
<td>Total</td>
<td>54.68</td>
<td>Total</td>
<td>142</td>
</tr>
<tr>
<td>Total nonantocyanins phenolic (GAE)</td>
<td>653.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FW = fresh weight
In the last period, wild food plants have become very attractive to the food industry, promoting their use as replacements for synthetic chemicals and nutraceuticals, in this way mulberry became a very important resource for its phytochemical composition, nutritional value and antioxidant properties.

As other authors done, Donno et al. (2014) identified mulberry as a rich source of antioxidant compounds; the observed fingerprint demonstrated that the species represent a rich source of phytochemicals, like organic acids, monoterpenes and polyphenolic compounds, especially flavonols and anthocyanins, which led to reasonably good overall fruit quality.

Among the bioactive compounds, one of the most important constituents of mulberry fruits is represented by anthocyanins (Lee et al., 2005). Several studies have investigated the content of phenolics as flavonoids and anthocyanins in mulberry extracts, as well as carotenoids content (Arabshahi-Delousee and Urooj, 2007).

Due to this health-promoting compounds mulberry fruits are traditionally used as a laxative, odontalgic, analgetic, expectorant, hypoglycaemic and emetic agent; the traditional Chinese medicine used mulberry fruit as folk remedy to treat oral and dental diseases, diabetes, hypertension, arthritis and anaemia (Liang et al., 2012).

Several researches investigated the nutraceutical properties of Morus spp. fruits, studying their nutritional potentials, but a complete profile with quality traits, phytochemical composition and antioxidant activity evaluation is still lacking. Previous studies have examined the total content of phenols, flavonoids, anthocyanins and antioxidant activity of Morus spp. grown in different regions (Chen et al., 2012; Ozgen et al., 2009; Uzun and Bayir, 2012), but total polyphenol content, antioxidant activity and most of the potential health-promoting agents of mulberry fruits still remain under scribed.

Our research team has already started a chemical characterisation of Morus spp varieties. We started to analyze mulberry leaves and fruits, belonging to Morus nigra specie - Ukraine variety; using modern techniques for sugar spectrum, lipid, protein and mineral content, free aminoacid profile, polyphenolic and flavonoids contents and the methods are presented by Bobiş et al., 2018.

The high phenolic content and antioxidant activity of mulberry underline the nutritive and phyto-medicinal potential of this fruit. The results presented in this review indicate that Morus spp. has the potential to be further developed into a nutritionally and biotechnological valuable raw material for food and beverage application.

CONCLUSIONS

The recovery of Romanian sericulture is possible through the GCEARS-PSP actions. Its success depends on different factors, such as the production performances of mulberry plantation, obtaining high quality leaves for Bombyx mori feeding and rich mulberry leaves and fruits for production diversification.

A number of 570 mulberry trees (Morus latifolia) were planted in USAMV CN.

The literature study presented in this review, contains the characterisation of this plant, its leaves and fruits composition, bioactivity and their therapeutically effects on human are shortly presented here, but it demonstrates that the GCEARS-PSP has the ability to reach its economical and scientifically objectives.

Further studies will be done on the components of Kokuso 21 variety leaves and fruits in order to provide to the local pharmaceutical industry a very valuable vegetal raw material and to provide to the silkworms a quality fodder base.

REFERENCES

Bulletin UASVM Animal Science and Biotechnologies 75(2) / 2018
27. Papanastassi, V.P., (1995). Results and researches carried out within the CAMAR EC/DPVI Programme, contract 8001 -CF003003 titled "Selection and Utilization of Cultivated Fodder Trees and Shrubs in the Mediterranean Region".
42. www.usamvcluj.ro/crcas-ppm
43. http://www.inserco.org/
44. http://ses-vratza.bacsasilk.org