Drought Effects to the Dry Bean Local Population Productivity

Eliza TEODORESCU ${ }^{11}$, Neculai MUNTEANU ${ }^{1)}$ and Costel VÎNĂTORU ${ }^{2)}$
${ }^{11}$ Faculty of Horticulture, "Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine, ${ }^{\mathrm{N}}$ 3, Mihail Sadoveanu Alley, 700490, Iaşi, Romania, Corresponding author: neicu eliza@yahoo.com
${ }^{2)}$ Vegetable Research and Development Station, No 23, Mesteacănului Street, 120024, Buzău, Romania

Bulletin UASVM Agriculture 71(1) / 2014
Print ISSN 1843-5246; Electronic ISSN 1843-5386

Abstract

The study presents the main characteristics of 10 local bean population (Phaseolus vulgaris L. convar. nanus). Considering the total opposite weather conditions in 2011 and 2012, growing bean allowed their evaluation in drought conditions. High temperatures and relative low air humidity determined a 76.61% yield diminuation at V_{7} in 2012 comparative to 2011 . The 13.52% yield diminuation from an year to another registered at V_{1} corroborated with a 0.25 drought susceptibility index (DSI), recommands using this provenience in drought breeding works for this species.

Keywords: dry bean, drought, Phaseolus vulgaris L. convar. nanus, breeding, germplasm collection, local population

INTRODUCTION

In 2011, in Romania there were 24105 ha cultivated with bean. This surface represents 28.9% from the surface intended for bean culture in the European Union (FAO). In 2012, the surface cultivated with bean in Romania, increased with 1302 ha, and the percentage reached 30%.

Yield level obtained in Romania in 2011 (0.89 t / ha) represented half of the Europen Union average ($1.71 \mathrm{t} / \mathrm{ha}$), and in 2012 yield decreased with 232 kg and represented only 40% from mean yield of the European Union.

In the same geographical area, yield obtained in countries affected by drought in those two years shows that the quality of the bean biological material must be improved. Drought resistance represents the main breeding objective at bean (Emam et al., 2010) and it is determined by the ecological demands of this plant (Porch, 2006).

In this sense, there was initiated a breeding program at this species concretized in collecting and growing many local populations from all parts of the country.

The researches had the purpose to identify the proveniences with qualities that correspond to the main breeding objectives to this species, namely: obtaining new productive bean varieties, early, with white color seeds, resistant/tolerant to the main diseases and pests, resistant to the weather conditions of 2012, especially to low atmospheric humidity.

MATERIALS AND METHODS

There were selected 10 proveniences with determined growth from the V.R.D.S. Buzău germplasm collection that contains over 150 bean proveniences. The biological material studied presents threads and it also presents characteristics that can be used at the breeding works for this species.

The biological material was cultivated in open field, according to the technology recommended by the specialty literature (Ruşti and Munteanu, 2008). During the experiment were made many mensurations according to the U.P.O.V. guide, in order to determine distinctness, uniformity and
stability of the bean plants (TG 12/9). In order to establish the intensity or the gradation of different characteristics was consulted the Color scales for identification characters of common bean (Genchev and Kiryakov, 2005).

The experiment was organized according to the randomized blocks method with 3 repetitions. In order to analise the results we used analysis of variance, multiple comparison method (Duncan`s test) and the analysis of data from several year experiments on the same location.

Weatherconditionsin 2012 werecharacterized by a high level of temperatures corroborated with a low level of precipitations (Fig. 1).

RESULTS AND DISCUSSIONS

Half of the studied variants present elliptic shaped seeds $\left(V_{1}, V_{3}, V_{6}, V_{7}\right.$ and $\left.V_{8}\right)$. At V_{2}, V_{4}, V_{9} and
V_{10} we can observe reiniform seeds with a higher or lower degree of curvature, and V_{5} has circular to elliptic seeds.

Most variants presented an only seed color: white $\left(\mathrm{V}_{7}, \mathrm{~V}_{8}\right.$ and $\left.\mathrm{V}_{10}\right)$, black $\left(\mathrm{V}_{1}\right)$, red $\left(\mathrm{V}_{9}\right)$ and beige $\left(V_{2}\right)$.

Distribution of the secondary color compared with main color at V_{3} and V_{6} was made up by straks, at V_{5} by patches, and at V_{4} by half of grain (Fig. 2).
V_{5} and V_{6} variants had different shapes, but presented same colors. Secondary color distribution (red) is different: in stranks at V_{6} and in patches at V_{5} (Fig. 3).

In 2011, seeds length varied between 1.72 cm at V_{2} and 1.13 at V_{1}. In the following year length of ell seeds decreased, except V_{5} where was registered an 0.05 cm increase (Tab. 1).

Fig. 1. Level of temperatures and precipitation in 2012 (www.accuweather.com)

Fig. 2. Color and shape of seeds in longitudinal and transverse section

$$
\left(V_{9}, V_{4}, V_{3}, V_{8}, V_{1}, V_{10} \text { and } V_{2}\right)
$$

Fig. 3. Comparisson between shape and color distribution at V_{6} and V_{5}

Tab. 1 Main characteristics of the seeds

Variants	Shape in longitudinal section	Seed`s color	Seeds dimensions (cm)						Main weight of seed (g)	
			Length		Thickness		Width			
			2011	2012	2011	2012	2011	2012	2011	2012
V_{1}	elliptic	black	1.13 g	1.05 f	0.50 f	0.50 d	0.62 bc	0.62 a	0.25 f	0.25 e
V_{2}	kidney	beige	1.72 a	1.67 a	0.83 b	0.83 a	0.65 b	0.63 a	0.56 b	0.54 a
V_{3}	elliptic	beige and brown	1.21 ef	1.15 e	0.66 e	0.64 c	0.51 f	0.53 b	0.29 ef	0.28 cde
V_{4}	kidney	black and white	1.36 d	1.27 d	0.47 f	0.47 d	0.61 cd	0.60 a	0.30 e	0.25 de
V_{5}	circular to elliptic	beige and red	1.22 e	1.27 d	0.91 a	0.86 a	0.70 a	0.64 a	0.51 c	0.44 b
V_{6}	elliptic	beige and red	1.42 c	1.38 c	0.94 a	0.85 a	0.71 a	0.63 a	0.65 a	0.48 ab
V_{7}	elliptic	white	1.34 d	1.30 d	0.71 d	0.67 bc	0.56 e	0.53 b	0.40 d	0.34 c
V_{8}	elliptic	white	1.16 fg	1.15 e	0.71 d	0.69 b	0.56 e	0.53 b	0.32 e	0.29 cde
V_{9}	kidney	red	1.62 b	1.37 c	0.81 b	0.72 b	0.59 de	0.52 b	0.51 c	0.32 cd
V_{10}	kidney	white	1.66 b	1.56 b	0.78 c	0.69 b	0.64 bc	0.62 a	0.59 b	0.43 b
Mean			1.38	1.32	0.73	0.69	0.61	0.58	0.44	0.36

Note: Different letters between cultivars denote significant differences (Duncan test, $\mathrm{p}<0.05$).

In 2011, seeds thickness varied between 0.47 cm at V_{4} and 0.94 cm at V_{6}. In 2012, seeds had the same thickness or a $0,09 \mathrm{~cm}$ decrease $\left(\mathrm{V}_{6}, \mathrm{~V}_{9}\right.$ and V_{10}).

The highest value of seeds width was registered in 2011 at $\mathrm{V}_{6}(0.71 \mathrm{~cm})$, and the lowest value was registered at $V_{3}(0.51 \mathrm{~cm})$.

The lowest value of a seed mean weight was registered and maintained during those 2 years at V_{1} (Tab. 1), this way it determined significant negative differences than the mean of the experiment. The highest values of a seed mean weight were registered in 2011 at $\mathrm{V}_{6}(0.65 \mathrm{~g})$, and in 2012 at $V_{2}(0.54 \mathrm{~g})$. The highest values of seeds mean weight, considering the 2 years of culture, was observed at $V_{6}(0.56 \mathrm{~g})$. In what it concerns V_{6}, the variance analisys showed that the interaction between years and variants determined a distinct significant difference than the mean of the experiment.

The highest values of the number of seeds/pod (Tab. 2) were registered in 2011 at V_{4} (7.00), and in 2012 at V_{1} (6.33). In 2012, at V_{8} was registered the
most pronounced decrease of the mean number of seeds/pod comparing to the value obtained in 2011 (2.67); V_{8} was followed by V_{10} (1.33). The interaction between variants and culture years determined significant differences at $\mathrm{V}_{1}(1.55), \mathrm{V}_{4}$ (1.55) and $V_{10}(-1.62)$. Studies made by Ruști and Munteanu in 2008 show that the mean number of seeds/pod for dry bean is included within 5 and 10 according to the pods length. From this point of view the mean value obtained in 2011 (5.37) is situated within normal limits, while the mean value obtained in 2012 (4.53) is inferior to this interval.

In what it concerns the mean number of pods/ plant, the highest values and and also significant differences comparring to mean value of the experience were registered during both culture years at $V_{1}(2011-59.00 ; 2012-54.00)$. In 2011 were registered distinct and verry distinct significant differences, according to the mean value, $\mathrm{V}_{6}(-11.47)$ și $\mathrm{V}_{8}(-17.47)$. In 2012 the lowest value and significant difference than the mean value, was registered at $V_{7}(12.00)$. In what

Tab. 2 Main characteristics of the pods

Variants	N^{o} of seeds/pod		N° of pods/plant		MMB (g)	
	2011	2012	2011	2012	2011	2012
$\mathrm{~V}_{1}$	6.67 ab	6.33 a	59.00 a	54.00 a	248.61	247.26
$\mathrm{~V}_{2}$	4.67 cd	3.67 cde	38.33 c	22.67 cd	564.07	538.99
$\mathrm{~V}_{3}$	5.67 abc	5.00 abc	46.00 b	35.67 b	286.04	281.72
$\mathrm{~V}_{4}$	7.00 a	6.00 a	38.00 c	16.33 d	300.43	254.50
$\mathrm{~V}_{5}$	4.00 d	3.67 cde	47.33 b	32.00 bc	512.52	440.46
$\mathrm{~V}_{6}$	6.00 abc	5.67 ab	27.00 de	14.67 d	647.11	482.72
$\mathrm{~V}_{7}$	5.33 bcd	5.00 abc	40.67 bc	12.00 d	401.27	339.30
$\mathrm{~V}_{8}$	5.67 abc	3.00 de	21.00 e	17.00 d	319.20	290.75
$\mathrm{~V}_{9}$	4.67 cd	4.33 bcd	31.00 d	23.33 cd	511.41	318.90
$\mathrm{~V}_{10}$	4.00 d	2.67 e	36.33 c	18.33 d	588.92	430.91
Mean^{5}	5.37	4.53	38.47	24.60	437.96	362.55

Note: Different letters between cultivars denote significant differences (Duncan test, p < 0.05).

Tab. 3 Main productivity characteristics

Variants	Mean yield seeds (g/plant)		Difference of yield 2011-2012	DSI	
	2011	2012		$\%$	
$\mathrm{~V}_{1}$	97.79	84.56	13.23	13.52	0.25
$\mathrm{~V}_{2}$	100.91	44.80	56.11	55.61	1.03
$\mathrm{~V}_{3}$	74.56	50.24	24.32	32.62	0.60
$\mathrm{~V}_{4}$	79.91	24.94	54.97	68.79	1.27
$\mathrm{~V}_{5}$	97.04	51.68	45.36	46.74	0.86
$\mathrm{~V}_{6}$	104.83	40.12	64.71	61.73	1.14
$\mathrm{~V}_{7}$	87.03	20.36	66.67	76.61	1.41
$\mathrm{~V}_{8}$	37.98	14.83	23.16	60.96	1.13
$\mathrm{~V}_{9}$	73.98	32.24	41.74	56.42	1.04
$\mathrm{~V}_{10}$	85.59	21.07	64.52	75.39	1.39
Mean	83.96	38.48	45.48	54.17	-

it concerns V_{7}, there was also observed the most pronounced decrease of the number of pods/ plant number in 2012 than 2011 (28.67). The interaction between variants and culture years determined significant negative differences at V_{8} and distinct significant positive at V_{1}.

MMB values are situated in normallimits (Ruști and Munteanu, 2008). V_{9} manifested a pronounced
sensibility to 2012 weather conditions, there was observed a 37.64% MMB decrease than the one obtained in 2011. Widely MMB decreases were registered as well at $\mathrm{V}_{10}(26.83 \%)$ and $\mathrm{V}_{6}(25.4 \%)$.

Highest yield values in 2011 (Tab. 3) were registered at V_{6} (104.83 g seeds/plant) and V_{2} (100.91 g seeds/plant), and the lowest value was registered at V_{8} (37.98 g seeds/plant). V8 variant
maintained a lower level in 2012 (14.83 g seeds/ plant). Same year V_{1} had the highest production (84.56 g seeds/plant).
V_{7} presented a higher sensibility in what it concerns 2012 weather conditions because yield level had a 76.61% decrease than lats year level (87.03 g seeds/plant), reaching close to the minimum of V_{8} (14.83 g seeds/plant).
V_{1} was less influenced by 2012 weather conditions, because the yield decreased only with 13.23 g seeds/plant, which represents 13.52% from 2011 yield (97.79 g seeds/plant). At V_{3} there was registered a 32.62% decrease, rest of the variants having losts bigger than 50%.

Drought susceptibility index (DSI) confirms that V_{1} was less affected by 2012 weather conditions (Beebe, 2013), and V_{7} presents the highest drought susceptibility (1.41).

CONCLUSION

In 2011 at V_{6} were registered the highest values in what it concerns yield (104.83 g seeds/ plant), width (0.71 cm), thickness (0.94 cm) and seeds weight (0.65 g).
V_{1} was the most resistant local population in 2012 weather conditions, because at this variant there was registered the highest number of seeds in pod (6.33), the highest number of pods per plant (54), and the mean seed weight (0.25 g) did not registered a decrement comparing to 2011.

Weather conditions of 2012 negatively influenced the mean seeds weight at V_{9}, number of seeds in pod at V_{8} and number of pods per plant V_{7}.

2012 conditions determined a 13.87 decrease of the mean number of pods/plant and a 54.17% decrease of plants yield comparing to 2011.

Even if V_{7} and V_{8} have white seeds and there are preffered by consumers, low yield values and high DSI values do not recommend their introduction into culture.

Acknowledgements. This work was co financed from the European Social Fund through Sectorial Operational Program Human Resources Development 2007-2013, project number POSDRU/I.89/1.5/S62371 „Postdoctoral School in Agriculture and Veterinary Medicine area".

REFERENCES

1. Beebe, S. E., I. M. Rao, M. W. Blair and J. A. Acosta-Gallegos. (2013) Phenotyping common beans for adaptation to drought. Frontiers in physiology. March. Vol. 4. article 35:1-20.
2. Emam, Y., A. Shekoofa, F. Salehi and A. H. Jalali (2010). Water stress effects on two common bean cultivars with contrasting growth habits. American-Eurasian J. Agric.\& Environ. Sci., 9 (5): 495-499.
3. Genchev D. and I. Kiryakov. (2005). Color scales for identification characters of common Bean (Phaseolus vulgaris L.). Dobroudja Agricultural Institute - General Toshevo, Bulgaria.
4. Porch, T. G. (2006). Application of stress indices for heat tolerance screening of common bean. J. Agronomy\& Crop Science 192, 390-394.
5. Ruști, G. and N. Munteanu. (2008). Cultura fasolei de grădină urcătoare. "Ion Ionescu de la Brad" Editure, Iași, Romania.
6. International Union for the Protection of New Varieties of Plants (UPOV), Switzerland (2005). Guidelines for the conduct of tests for distinctness, uniformity and stability french bean (Phaseolus vulgaris L.) TG/12/9. Geneva.
7. http://faostat.fao.org/site.
8. http://www.accuweather.com/en/weather-news/ europe-forecast-summer-2012/65828.
