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Abstract. Our study compares the performances of two statistical methods, namely multiple 

linear regression and classification and regression trees, for deriving spatial models of soil reaction in 
the surface horizon. The applications were carried out within a 186 km2 hydrographic basin situated in 
eastern Romania. Statistical models were computed from a sample of 235 soil profiles, scattered in the 
eastern half of the basin. An independent sample of 237 expeditionary pH measurements was used to 
validate the results within the interpolation area, whereas an independent sample of 50 soil profiles 
was used to validate the results within the extrapolation area (the western half of the basin). The 
predictors included geomorphometrical parameters, derived from a 10x10 m digital elevation model, X 
and Y coordinates of soil profiles and the main soil types for the regression trees approach. The 
stepwise selection procedure indicated Y coordinate, digital elevation model, wetness index and 
surface ratio as the best predictors for soil reaction. The correlation between observed and predicted 
pH values for the training sample suggests a much higher quality of the regression trees spatial model. 
However, the validation using the two independent samples points out the instability of this model and 
recommends the regression model more reliable.  
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INTRODUCTION 
 

During the last decades, statistical methods have developed exponentially, supported 
by the rapid evolution of precision instruments and computers, allowing the implementation 
of complex, manually unapproachable methods, as well as a fast and accurate processing of 
large amounts of data. Soil science has continuously and consistently benefited from 
application of statistical methods (McBratney et al., 2003, Lagacherie et al., 2006), leading to 
the individualization of a new branch within this field of science, called pedometrics, which is 
defined as “application of spatial statistics for the purpose of spatio-temporal modelling of 
soil data. It especially focuses on soil survey, precision agriculture applications, mapping of 
soil pollutants and other environmental applications” (Heuvelink, 2003). 

The purpose of our study is to test the performances of two statistical methods, namely 
multiple linear regression (MLR) and classification and regression trees (CART), for spatial 
prediction of soil reaction both inside (interpolation) and outside (extrapolation) the main 
sampling zone.  
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MATERIALS AND METHODS 
 

Dobrovăţ basin is situated in eastern Romania, within the Central Moldavian Plateau, 
covering a surface of about 186 km2. The monocline structure of the surface geological layers 
has conditioned the formation of a cuesta landscape (Ioniţă, 2000), with steeper slopes (>20o) 
oriented towards North and West. The highest altitudes, exceeding 350 m, correspond to 
structural plateaus located mainly in the northern part of the region, while the lowest altitudes, 
under 170 m, are encountered along the main floodplains from the southern part of the region. 
The climate is temperate continental, with mean annual temperatures of 8.1-9.8oC and mean 
annual precipitations of 550-612mm (Patriche, 2005). The northern part of the region is 
covered by oak and beech forests, with a large extent of Luvisols, while the southern half is 
dominated by agricultural lands and Chernozems (Pirnău, 2011).  

The pedological database, consisting in georeferenced soil profiles and associated 
analytical data, was provided by Iasi County Office for Soil Survey. As one can easily see in 
figure 1, there is a great contrast in soil profiles coverage throughout the basin. This suggested 
us to test methods suitable for extrapolation, specifically to use the much consistent data from 
the eastern half of the basin (235 profiles) and test it against the data available for the western 
half (50 profiles). In addition, 237 expeditionary pH measurements were available for the 
eastern part of the basin, which we used as an independent validation sample for interpolation. 

 
 

 
 

Fig. 1. Location of the study region within Romania and spatial distribution of soil profiles 
 

Among the statistical methods suitable for extrapolation, we focused on the classical, 
wide-spread linear regression and on the less common classification and regression trees. 
Local interpolators, such as kriging or geographically weighted regression, are not fit for this 
purpose, as they depend on the existence of neighbouring data. 

Statistical analysis was carried out using XLSTAT 2010 trial version software. The 
results were subsequently applied in GIS using ArcGIS 9.3 and TNTmips 6.9 software 
packages. Also, SAGA-GIS 2.0.3 was used to derive some of the geomorphometrical 
predictors. 
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Multiple linear regression is a method commonly used for computing spatial models 
of soil variables, especially in combination with ordinary kriging of residuals (regression-
kriging). Details regarding the theory and application of linear regression can be found in 
numerous scientific papers approaching the use of statistical methods in geosciences 
(Johnston, 1978; Burrough and McDonnell, 1998; Hastie et al., 2001; Hengl et al., 2004; 
Kutner et al., 2004; Freund et al., 2006; Hengl, 2007). 

Essentially, the linear regression method aims to explain the spatial distribution of a 
quantitative soil variable (dependent variable) by means of a linear combination of predictors, 
through the form of a regression equation: 
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where ŷ is the dependent variable (soil parameter), xi are the predictors, n is the number of 
predictors, a is the intercept, bi are the partial regression coefficients and ε is the standard 
error of estimate. 

The regression equation form is determined by minimizing the sum of squares of 
differences between observed and predicted values (minimizing residual variance). The global 
approach, suitable for extrapolation, computes a single equation for the area of interest, based 
on all available data. For this reason, the resulting statistical model reflects the general spatial 
trend of soil parameters, as the method is unable to render spatial anomalies. These anomalies, 
induced by local factors and generally important for soil cover, interfere with model’s quality 
to the extent that the explained variance rarely exceeds 60%. Typically, the solution to this 
problem is the coupling of regression model with a kriging model of residuals (Hengl, 2004, 
2007). 

Linear regression and regression-kriging have been extensively used for mapping soil 
quantitative parameters, such as clay content, soil moisture, soil depth, soil reaction, organic 
carbon content (Odeh and McBratney, 2000; Florinsky et al., 2002; Xie et al., 2004; Cheng et 
al., 2004; Hengl et al., 2007; Ziadat, 2010). 

Working with many predictor variables arouses the multicollinearity problem, which is 
caused by the presence of significant correlations among the predictors. This redundancy may 
negatively affect the interpretation of partial regression coefficients. The minimization of 
multicollinearity may be achieved by using principal components analysis (PCA) to extract 
orthogonal predictors from the original data (Hengl, 2004) or by filtering the predictors using 
the stepwise approach, the latter being applied in our analysis. 

Classification and regression trees (CART, Breiman et al., 1984) identifies optimum 
break points within predictor variables, separating them in groups inside which the values of 
the dependent variable are as homogeneous as possible. At first step, the method selects the 
predictor on the basis of which the dependent variable may be best separated into two groups 
and identifies the optimum break point. Each of the two resulting groups are further separated 
into two sub-groups on the basis of another (or the same) predictor. Following this logic, the 
method generates a tree-like structure by means of which the dependent variable is optimum 
divided into a number of groups, characterized by maximum internal homogeneity and 
maximum external differentiation. 

CART may be used to explain and predict both qualitative variables (classification 
trees), such as soil classes (Lagacherie and Holmes, 1997; Mendonça-Santos et al., 2008), soil 
drainage classes (Ciatella et al., 1997) and quantitative variables (regression trees), such as 
soil profile depth, total organic carbon (McKenzie and Ryan, 1999; Ryan et al., 2000), clay 
content, silt content, cation exchange capacity (McBratney et al., 2000; Bishop et al., 2001; 
Park and Vlek, 2002). 
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Though less used for modelling soil parameters, CART method presents a series of 
important advantages compared to the classical linear regression: predictor – predictand 
relationship is non-linear; it is a non-parametric method; it may easily integrate qualitative 
variables both as predictors and dependent variable. Among the disadvantages, we may 
mention the subjectivity involved in choosing the optimum tree size, the discrete output (the 
method does not generate a continuous series of values, but a finite number equal to the 
number of the terminal nodes). 
 

RESULTS AND DISCUSSION 
 

The predictors used for explaining the spatial distribution of soil reaction in the surface 
horizon are mostly geomorphometrical predictors, derived from a 10x10 m digital elevation 
model (DEM): slope angle and aspect, surface ratio, convergence index, SAGA wetness 
index, mean, profile and plan curvature, flow accumulation. In addition, we used the X and Y 
coordinates of soil profiles and, for CART approach, the main soil types. The surface ratio 
represents the ratio between the real surface area and the plan projected area of a pixel. The 
SAGA wetness index is similar to the topographic wetness index (TWI), but it is based on a 
modified catchment area calculation, using a formula proposed by Böhner et al. (2006). The 
convergence index evaluates the convergent or divergent nature of the flow passing through a 
cell, while flow accumulation represents the number of upstream pixels converging into a 
pixel. 

Using stepwise MLR, the optimum spatial model for soil reaction in the surface 
horizon is described by the following equation: 

 
pH = 43.659 – 0.000075 · Y – 0.00428 · DEM + 0.0871 · WI + 9.0076 · SR 
 

where WI is the wetness index and SR is the surface ratio. The model explains 56% of pH 
spatial variance, with a root mean square error (RMSE) of 0.585 (fig. 4). 

According to the standardized regression coefficients, the predicted pH spatial 
distribution (fig. 2a) depends mainly on altitude and Y coordinate and, secondary, on wetness 
index and surface ratio. The regression equation indicates the increase of soil acidity from 
south to north and from lower to higher altitudes, explained by the increase of precipitations 
and the dominance of forests in the northern part of the basin. Also, the equation point out the 
increase of soils basic character in areas with high potential humidity (floodplains) and on 
steeper slopes (surface ratio being highly correlated to terrain slope), due to the more intense 
erosion processes which bring to surface the more basic soil material from underlying 
horizons. 

For the application of CART, we tried to use the same predictors in order to facilitate 
the comparison of the two methods. However, the Y coordinate was eliminated in this case 
because it led to unrealistic north-south discontinuities in pH spatial distribution. Instead, 
because the method allows the ready integration of qualitative data, we tested the use of main 
soil types’ spatial units as predictor. 

The computed regression tree includes 20 terminal nodes (fig. 3), the predicted pH 
spatial distribution (fig. 2b) depending mainly on soil types spatial units and DEM and 
secondary, on wetness index and surface ratio. The first predictor partition separates basic 
soils (Fluvisols, Gleysols, Chernozems, Regosols) from acid soils (Phaeozems, Luvisols), 
then another differentiation is made between the more basic Fluvisols and Gleysols and the 
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less basic Chernozems and Regosols, on one hand, and between the more acid Luvisols and 
the less acid Phaeozems, on the other hand. 

 

 
a 

 
b 

 
Fig. 2. Spatial model of soil reaction in A horizon derived by multiple linear regression (a) and classification and 

regression trees method (b) 
 

 
 

Fig. 3. The regression tree computed for soil reaction in A horizon 
 
The correlations between observed and predicted pH values are displayed in figure 4. 

Apparently, CART method performs better than MLR, the explained variance being much 
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higher (R2 = 0.78) and RMSE lower (0.415), for the training sample, than the corresponding 
values for linear regression (R2 = 0.56, RMSE = 0.585). However, the quality of the CART 
model drops significantly outside the training sample. For the interpolation validation sample, 
the explained pH variance is only 35%, with a RMSE of 0.714, while for the extrapolation 
validation sample, these parameters have values of 48% and 0.637 respectively. On the other 
hand, the regression model is much more stable, therefore more reliable, the differences 
among the quality parameters for the three samples being much more reduced. 

 

 
 

Fig. 4. Validation of pH spatial models 
 

CONCLUSIONS 
 

Our analysis shows that the classical linear regression approach is better suited than 
the classification and regression trees method for explaining and mapping soil reaction in the 
surface horizon within Dobrovăţ basin. Though the correlation between observed and 
estimated pH values is higher in the case of CART method, for the training sample, the model 
is much more unstable than the regression one, its quality dropping significantly outside the 
training area. However, because its important advantages (non-linearity, non-parametric 
nature, easy integration of qualitative information), the CART approach is worth being further 
investigated. 
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