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Abstract: In this note we make a connection between diffuggnation and equations of Darcy and
Richard used in study the soil hydrodynamics.

INTRODUCTION

Most physical phenomena (e.g. fluid dynamics) camiodeled using partial differential
equation. A partial differential equation is an ation that contains partial derivatives of
unknown function. Two of the most common examplesspeeded of milk in a cup of coffee
or warming of a rod when at the end of it ther@ng or two source of heat. The first one
study the diffusion of milk in a cup of coffee; timeilk concentration depends upon time
elapsed by the time when someone put the milkcdofize and by the place where he pour the
milk. The second one study the dissipation of teathnto the rod that depends by the time
and by the position of considered point into thd.rdlso we can imagine how the water
distributes into the solil layers, this phenomenepethd also by the time and space and at the
end of this paper we show that it governed by iffagion equation.

HYDRODYNAMICS OF SOIL WATER AND DIFFUSION EQUATION

The hydrodynamics of the water into soil is a veoynplex phenomenon. In order to
understand this phenomenon soil scientists havesrsache models for the flow of water into
soil. Depending by the parameters that will be mered and the way that we modeling the
soil water flow into the soil we can obtain diffatdype of equations. It is important to have
equilibrium between the assumptions and the paem@bvolved in a model. Taking into
consideration previous affirmation, we have différgype of equations that models the water
flow into soil.

1. Darcy’s equationThe assumptions in this case are:

» soil is saturated with water;

» water is flowing in all pores under a positive sa® headh.
Usually the soil is quasi-saturated with water, foutthis case of saturated flow the impact of
pores filled with air is not considered.

The soil is paced in a horizontal cylinder conndéteboth sides with vessel filled with
water, maintaining in both side a constant levelvater. If the water level in the left side is

higher that on the right side the water will flovorin left to right. The flux density :%

whereV is the volumetric overflowt is time andA is the area of a cross section of the
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cylinder perpendicular to the direction of flow.a8ing from this relation the Darcy have
obtained the following experimental law:
q=-K,OH (1)
where:
* H=h+zrepresents the total potential head amepresents the term due to elevation in
case when the soil is put in a vertical cylinder;
* K, represents saturated hydraulic conductivity ofsbié

Other limitation of Darcy’s equation is given byetlow gradient.
2. Unsaturated flow in rigid soil A rigid soil is that do not change their bulk volem
with change of water content [3]. The assumptiothia case is that
e pores that are filled with air could resaturateli@in;
» the capillarity effect is not take into consideoati
The experiment in this case considers an unsaturstéd column and we can make an
analogy with a flow in a syphon with an installegistance. The flux density depends upon
the hydraulic gradient and is governed by a eqoaimilar to (1):
q=KT @
wherelL is the soil length an# is unsaturated soil conductivity [[*]). Because the soil is
not saturated and flow occurs primarily in pordiedi with waterK is smaller tharKs for the
same but saturated soil. From this realkonill be a function of the soil water potential kea
and equation (2) became

dH
q= K(h)—Ol (3)

4

If we work in 2 or 3 dimensions we have:
q=K(h)OH (4)

Buckingham was the first that had described theeddence of unsaturated flow upon the
potential gradient so equation (3) and (4) are maB&rcy-Buckingham equations These
type of equations are adequate for describing uresiad flow only if the soil water content is
not changing in time, but this case is very seldora.

When # and g are changing in time equation (3) or (4) must benlsined with the
continuity equation. Continuity equation relateg ttate of change in time fat with the
spatial rate of change fayin a smaller elementary soil volume. The resula ison linear
equation and even for simply conditions the sotutgdifficult to find.

The flux density is described by Darcy-Buckinghaquation and the rate of filling or
emptying of the pores of the soil is described Iy equation of continuity. Consider the
volume element having the edges of lendtk, Ay andAz. The difference between the

volume of water flowing into the volume element aralume of water that flowing out is
equal to the difference of water content in themalet of timeAt. The rate of inflow inx
direction isgx. Weassume that the rate of changedpis continuous so the rate of outflow is

qﬁ%Ax. The inflow volume is qAyAzAt and the outflow volume s
X
(qx +%ijAyAzAt . The difference between inflow and outflowxidirection is:

~ 9% pxaynznt (5)
oX

The differences between inflow and outflowyiandz direction are:
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The change in water content for the entire repitas®e volume is the sum of (5), (6) and (7)
that means:

0
B9 nuaynzat = - 9% + %% 1 9% anvazat 8)
At ox o0y o0z
whent — 0 equation (8) became
99 _ (0g, , %9, , 9q, )
ot ox ody o0z
Combining (9) with (3) we have:
96 = - i(K(h)a—Hj +i K(h)a_H +£(K(h)a—Hj (10)
ot 0X ox ) oy oy ) 0z 0z
If we work in one dimension and we assume thasthls isotropic then
9 —i(K(h)—a(h+ Z)j - % :i(K(h)@j + %K (11)
ot 0z 0z ot 0z 0z) o0z

Equations (10) and (11) are calleechard’s equations

3. Water flow in non rigid soils. When a soil swells or shrinks due to the water e&oint
the equations mention above do not work. A theonylie three dimensional case is an open
problem. There are some results for one dimensioasé [4, 5] and describe wetting of
artificially repacked soil column in a laboratory.

4. Connection to the diffusion equation.The diffusion equation is a parabolic partial
differential equation. The general forms of thisi@pn are:

ou _ 0°u . . I .
—= D(t,x)ﬁ (one dimensional diffusion equation) (12)

ot
% =D(t,x)Au (n dimension diffusion equation) (13)
% =D(t,x)Au —hOu (n dimension diffusion — convection equation)  4)(1

% =D(t,x)Au+ f (t,x) (15) (diffusion equation with heat source) (15)

In what it follows we emphasize the connectiorwlsen diffusion equation in forms
mentioned above and Darcy’'s and Richard’s equatidhg general case is the diffusion
equations; in order to show the “equivalence” westrto connect diffusion coefficienD,

with hydraulic conductivitK [6]. If we useg—h :g—g? the Richard’s equation became:
y

Z

29 :Q(K(h)@%jﬁ_K% (16)
ot o0z 060z) 06 0z
The connection between soil water diffusivyd andK is
06
K@) =D(0)— 17
(6)=D(O) (17)
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then equation (16) became:
06 _20 oK 06
2 [o@22]+35%° (18)
ot oz dz) 06 oz

and represents the Richard’s equation in diffugivdrm and is in the form of classical
mathematical equation (14). When the gravitaticieam is neglected the above equation

became
06 _0 006
—=—| D(8)— 19

ot az( © azj (19)
The last equation has the same form as equatign (12

The diffusivity form for Darcy- Buckingham equatic
q= -D(G)—gg +K(6) (20)
y;

The main reason for the use of differential equmtio diffusivity form is given by the
reduction of the number of variable.

CONCLUSIONS

Due to peculiar condition of each experiment that study in most of the cases the
model use one of the equations mention above. Tiseseme particular type of soil that
works with other mathematical model (e. g. [1]).eThoil scientists prefer the Darcy or
Richard equations and mathematicians work withuditin equation. For both sides remains
the true problem: finding the solution of these ans. In order to find the solution is
mandatory that equation satisfy some initial (Dilet problem) or boundary condition
(Newman problem), or both conditions. We mentiomeanitial and boundary condition:

* initial conditions — the values férandh for all z. When the initial condition demands

g=0=> (jj—H =0 along the entire column. If the soil water conténhtis constant with
2

depth, a flux corresponding to the unit gradientHokxits. If 6; is very small the
downward flux may be very small.

e boundary conditions. A boundary for the 1-dimenalgoroblem is the topographical
surface; the other boundary can be a water talifeeisoil column has a finite length
or a defined water content or water flux. If thduoon is semi-infinite the other
boundary is wherz - oo,

Even for those cases is not easy to solve thieréifitial equations, sometimes is possible to
find a analytical solutions in the other it is pb$sto solve the problem numerically [2].
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