Bulletin UASVM Animal Science and Biotechnologies, 65(1-2)/2008 pISSN 1843-5262; eISSN 1843-536x

YIELD RESPONSE OF THE LAYING HYBRIDS TO THE MODIFIED COOPS REARING SYSTEM

Usturoi M.G., I. Vacaru-Opriș, R.M. Radu-Rusu, Cristina Radu-Rusu, D. Simeanu, A. Usturoi

University of Agricultural Sciences and Veterinary Medicine, Iasi email: umg@univagro-iasi.ro

Key words: eggs, yield, alternative system, laying hybrid

Abstract. The management conditions provided to the fowl having not free access to hall floor (Lc, L_1exp and L_2exp) allowed the expression of the used hybrid (Lohmann Brown) potential. Thus, control group yield counted 325.05 eggs, compared to just 311.34 eggs, produced by the L_3exp (hens with free access on hall floor). Mortality has been correlated with the brooding density (7.46÷9.57% in experimental groups and 11.66% in Lc one). Shell was found thicker in L_3exp group (0.369÷0.448 mm), as well as its breaking strength (0.337÷0.348 kg f/cm²). Microbial load of the shell gradually increased, especially in L_3exp group (148.62÷258.94 germs/cm², compared with 106.31÷106.61 germs/cm²).

INTRODUCTION

Almost 75% of the worldwide laying hens are reared in coop batteries, in some different brooding density conditions, as related to the country or region. The amount of hens, which should populate one single coop, is a quite controversial problem, knowing that selecting fowl for eggs yield improvement led to an increase of their aggressive temperament. Starting from 2012, the egg producers from the European Union will be constrained by law enforcements to use modified coops or other alternative systems in laying hens husbandry, knowing that conventional coops will cease to be used as legal or accepted production facilities. In Romania, the rearing of chicken laying hybrids uses almost exclusively the conventional coops batteries as accommodation manner. The replacement of this system by another one, would lead to the bankruptcy of an economic field that is still profitable.

MATERIAL AND METHODS

The "Lohmann Brown" hens we used as biological material (1731 hens) have been randomly distributed to 4 groups and reared in unmodified coops (Lc), modified coops (L_1 exp and L_2 exp) and having free access all over the hall (L_3 exp), as well (*tab. 1*).

Table 1

Notice	Experimental groups					
Notice	Lc	$\begin{tabular}{ c c c c c c } \hline $L_1 exp & $L_2 exp \\ \hline $nsive $ superintensive $ superintensive $ \\ $op of $ 5 hens/coop of $ 6 hens/coop of $ \\ $m^2 $ 3000 cm^2 $ 6000 cm^2 $ \\ \hline $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	L ₃ exp			
Husbandry system	superintensive	superintensive	superintensive	intensive		
Accommodation	4 hens/coop of	5 hens/coop of	6 hens/coop of	4 hens/coop of		
density	2000 cm^2	3000 cm^2	6000 cm^2	2000 cm^2		
Coop floor surface/hen				500 cm ² in laying+resting		
(cm^2)	500	600	1000	coop and 500 cm^2 in		
				feeding+watering coop		

Experimental design

Initial flock (hens)	432	435	432	432
Coops amount	108*	87**	72**	108***
Coop size (cm)	length=40; wide= 50	length=60; wide= 50	length=120; wide= 50	length=40; wide= 50
Coop floor surface (cm ²)	2000	3000	6000	2000

* standard coops ** modified coops *** feeding+watering coops and laying+resting coops

Several parameters and indexes have been assessed during the study:

Body weight	body weight dynamics
Eggs yield	eggs yield dynamics; laying intensity
Feeding	average feed intake (g/hen/day); feed intake (g feed/egg)
Health status	flock looses dynamics; flock looses casualty
Morphological and physical eggs quality indexes	morphological anomalies (%); eggs weight (g); shell thickness (mm); eggshell breaking strength (kg f/cm^2)
Microbiological eggs quality indexes	microbial load (germs/cm ² of eggshell)

All groups have been accommodated within the same shelter, divided in four compartments, identical as size and technological conditions.

RESULTS AND DISCUSSIONS

1. Body weight dynamics. The values for this parameter were slightly equal at all 4 groups, during the beginning of our studies (20^{th} week) ($1575.31 \div 1577.82g$), whilst the first major differences occurred when fowl reached peak of production (28^{th} week). Thus, hens weight reached 1901.69±40.86g in Lc, de 1870.53±38.07g in L₁exp, 1868.58±45.01g in L₂exp and only 1859.40±45.37g in L₃exp. At the end of our research (80^{th} week), the differences became more pronounced, reaching 2125.13±69.71g at the control group; 2087.83±67.95g at L₁exp group; 2083.03±66.99g at L₂exp group and 2030.29±69.64g at the L₃exp one.

2. Eggs yield and laying intensity (*tab. 2*). Classical rearing version (4 hens/unmodified coop) proven to generate the highest eggs yield meaning 325.05 eggs/hen. It followed the L_1exp (319.09 eggs/hen), then L_2exp , with 316.32 eggs/hen. The production reached only 311.34 eggs/hen within the L_3exp (free access over the whole rearing compartment), probably due to the energy and protein feed expenditures for the supplementary movements. The highest values of the laying intensity have been reached during the 28th week of life, meaning 91.56% in Lc, 89.97% in L_1exp , 89.88% in L_2exp and 88.35% in the L_3exp one.

Eggs Eggs hen Eggs hen Eggs/ hen Flock (hens) Eggs vield Laying % Flock Eggs vield Laying % Flock (hens) Eggs vield Laying % Flock (hens) Laying % Eggs vield ek (hens umul 13 umul.) 17 10 14 15 16 4 6 8 11 12 37.49 57.07 37.61 57.17 20 1154 38.2 2.67 434 1139 2.62 431.5 2.63 431 1115 36.96 2.59 431.5 1136 21 431 1753 58.10 6.74 433 1730 6.61 431 173 6.63 430 1694 56.28 6.53 22 23 431 74.91 432.5 2232 2471 73.72 431 73.75 11.79 429.5 72.64 11.98 11.7 2184 11.61 2503 430.5 83.06 17.79 431.5 81.81 17.50 431 2463 81.64 17.50 429 2418 80.52 17.25 430 2642 87.79 23.93 431 2608 86.44 23.55 431 2600 86.18 429 84.98 23.20429.5 89.44 30.19 431 87.97 29.71 431 87.70 429 2689 2646 29.67 86.51 29.2 2729 35.91 429 87.78 26 429 90.87 36.55 431 89.29 35.96 430.5 268 89.10 35 40 430.5 89.37 87.95 428.5 2731 91.05 42.92 2696 89.46 42.22 429.5 268 42.17 428.5 2638 41.5649.33 55.70 28 29 427.5 2740 91.56 429.5 89.97 48.51 428.5 2696 89.88 48.46 428 2647 47.74 427 2722 2702 91.07 428.5 268′ 89.58 54.78 428 2678 89.38 54.72 428 2629 87.75 53.88 30 428 266' 427.5 2610 87.23 426.5 90.50 62.03 89.02 61.01 88.85 60.94 427.5 59.98 31 90.14 42 88 49 42 86.84 426 2688 68 34 428 88 54 264 67.13 66.06 32 426 2683 89.97 74.63 427.5 2648 88.49 73.39 427 2640 88.32 73.31 427 2691 86.68 72.13 33 426 2648 88.80 80.84 426.5 87.59 79.52 426.5 2606 87.29 79.42 426.5 2657 86.65 78.12 34 425 5 88.08 87.00 2588 86 78 85 59 426 2580 86 52 85.48 425 5 2631 84 87 84 07 262 426 426 425.5 87.66 87.63 91.65 97.68 86.35 85.95 91.52 97.54 424.5 423.5 35 425 2617 2588 93.16 426 2583 2567 86.62 2626 85.01 90.02 2575 2560 36 424 99.29 86.18 2613 84.77 95.95

Eggs yield and laying intensity

Table 2

37	422.5	2578	87.44	105.41	424.5	2552	85.88	103.69	424.5	2545	85.66	103.53	422.5	2498	84.46	101.86
38	421.5	2562	87.27	111.52	423.5	2542	85.75	109.69	423.5	2534	85.48	109.51	421.5	2488	84.32	107.76
39	420.5	2538	87.04	117.61	422.5	2529	85.51	115.67	422.5	2522	85.27	115.48	420.5	2475	84.08	113.64
40	420	2523	86.33	123.65	421.5	2505	84.99	121.61	422	2498	84.56	121.40	419.5	2452	83.50	119.48
41	420	2492	85.82	129.66	420.5	2490	84.59	127.53	421.5	2483	84.15	127.29	418.5	2437	83.19	125.30
42	420	2492	84.76	135.59	420	2459	83.64	133.38	421	2453	83.24	133.12	418	2407	82.26	131.08
43	419.5	2470	84.11	141.47	420	2437	82.89	139.18	420.5	2431	82.59	138.90	418	2385	81.51	136.76
44	419	2463	83.97	147.35	420	2431	82.68	144.97	420	2424	82.45	144.67	418	2378	81.27	142.45
45	418.5	2424	82.74	153.14	419.5	2393	81.49	150.67	420	2385	81.12	150.35	418	2340	79.97	148.04
46	418	2398	81.95	158.88	419	2366	80.67	156.32	420	2360	80.27	155.97	418	2314	79.08	153.57
47	418	2376	81.20	164.56	419	2344	79.92	161.91	420	2338	79.52	161.53	418	2292	78.33	159.05
48	417.5	2364	80.89	170.22	418.5	2332	79.60	167.48	419.5	2337	79.24	167.08	417.5	2280	76.01	164.51
49	416.5	2346	80.53	175.86	418	2316	79.15	173.02	419	2311	78.79	172.59	417	2268	77.69	169.96
50	416	2322	79.74	181.44	418	2292	78.33	178.50	419	2285	77.90	178.04	417	2242	76.81	175.33
51	415.5	2307	79.32	186.99	417.5	2277	77.91	183.95	419	2271	77.43	183.46	417	2229	76.36	180.67
52	414.5	2288	78.85	192.51	416.5	2259	77.48	189.37	419	2252	76.78	188.83	416.5	2210	75.80	185.98
53	414	2558	77.91	197.96	416	2229	76.54	194.73	418.5	2222	75.85	194.14	416	2181	74.89	191.22
54	414	2339	77.26	203.37	415.5	2210	75.98	200.05	418	2204	75.32	199.41	415.5	2162	74.33	196.42
55	413.5	2218	76.63	208.73	415	2190	75.39	205.33	418	2183	74.61	204.63	415	2141	73.70	201.58
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
56	413	2196	75.96	214.05	415	2168	74.63	210.55	418	2161	73.85	209.60	415	2121	73.01	206.69
57	413	2172	75.13	219.31	414.5	2145	73.93	215.72	417.5	2137	73.12	214.92	415	2098	72.22	211.75
58	413	2156	74.57	224.53	413.5	2129	73.55	220.87	417	2121	72.66	220.00	415	2082	71.67	218.76
59	412.5	2131	73.80	220.70	413	2104	72.78	225.96	417	2097	71.83	225.03	415	2059	70.95	221.76
60	411.5	2097	72.79	234.79	412.5	2070	71.69	230.98	416.5	2064	70.79	229.98	415	2025	69.71	226.64
61	410.5	2072	72.11	239.84	411.5	2045	70.99	235.95	416	2039	70.02	234.88	414.5	2002	68.99	231.47
62	409	2051	71.64	244.85	411	2024	70.35	240.37	416	2018	69.29	239.73	414	1981	68.36	236.25
63	407	2026	71.11	249.83	410.5	2000	69.60	245.74	415.5	1994	68.50	244.52	414	1957	67.53	240.98
64	405.5	2007	70.71	254.78	409.5	1981	69.11	250.58	414.5	1975	68.07	249.28	413.5	1938	66.95	245.67
65	404.5	1967	69.47	259.64	408	1941	67.96	255.34	413.5	1935	66.85	253.96	413	1898	65.65	250.28
66	403.5	1936	68.54	264.43	406.5	1910	67.12	260.03	413	1905	65.89	258.57	413	1868	64.61	254.78
67	403	1912	67.78	269.17	405.5	1886	66.44	264.68	413	1881	65.06	263.12	413	1844	63.78	259.24
68	402.5	1886	66.94	273.85	405	1860	65.61	269.27	412.5	1855	64.24	267.61	412.5	1816	62.89	263.64
69	401	18853	66.01	278.47	404.5	1828	64.56	273.79	411.5	1822	63.25	272.04	412	1790	62.07	267.98
70	399.5	1836	65.72	283.07	403.5	1814	64.22	278.28	411	1807	62.81	276.43	412	1776	61.58	272.29
71	398	1800	64.61	287.59	402.5	1777	63.07	282.69	410.5	1769	61.56	280.74	411.5	1739	60.37	276.52
72	396.5	1756	63.27	292.02	401.5	1733	61.66	287.01	409.5	1728	60.28	284.96	410.5	1696	59.02	280.65
73	395.5	1726	62.34	296.38	400.5	1704	60.76	291.26	409	1698	59.31	289.11	409.5	1667	58.15	284.72
74	394.5	1698	61.49	300.68	399	1676	60.01	296.46	408.5	1671	58.44	293.20	408.5	1640	57.35	288.73
75	393.5	1655	60.08	304.89	398	1634	58.64	299.56	407.5	1629	57.11	297.19	407.5	1599	56.06	292.65
76	392	1638	59.69	309.07	397.5	1617	58.11	303.63	406.5	1612	56.65	301.15	406.5	1582	55.59	296.54
77	390.5	1581	57.84	313.12	396.5	1561	56.24	307.57	405	1556	54.88	304.99	406	1527	53.73	300.30
78	389	1558	57.22	317.13	369	1538	55.48	311.45	403	1533	54.34	308.79	405.5	1502	53.02	304.01
79	387	1558	56.88	321.11	395.5	1538	54.97	315.30	401	1516	54.01	312.57	404	1489	52.62	307.69
80	385	1519	56.38	325.05	395	1500	54.25	319.09	309	1495	53.53	316.32	402	1467	52.13	311.34
00	202	1317	50.56	525.05	375	1500	54.23	517.09	309	1473	55.55	510.52	402	1407	52.15	311.34

3. Feed consumption (*tab. 3*). Several mixed feed recipes have been used to feed the fowl, depending on the energy and proteins requirements, as related to the laying intensity. Lowest values for daily feed intake ($106.32 \div 115.18$ g/hen) and for FCR ($126.29 \div 141.65$ g/egg) have been observed during the first feeding period (20-45 weeks), then increased, during the 46-65 weeks period ($111.99 \div 115.66$ g/hen and $146.48 \div 158.38$ g/egg) and mostly across the last feeding stage (66-80 weeks), when daily average intakes reached $119.74 \div 135.60$ g/hen and FCR was calculated values were found within the $191.29 \div 231.75$ g/egg interval. All over the studied period the best values for feed intake have been noticed at the control group (112.63g/hen-average daily intake and 145.34g/egg-FCR), while the poorest results were achieved by the hens belonging to the L₃exp (120.51g/hen and 164.38g/egg).

Feed intake and Feed Conversion Rate

Table 3

Float aga	Parameters	Group					
Flock age	Farameters	Lc	L1exp.	L2exp.	L3exp.		
	Group average size (hens)	425	427	426	425		
20-45 weeks	Feed intake (kg/group/period)	8224	8508	8611	8909		
(182 days)	Average feed intake (g/hen/day)	106.32	109.48	111.07	115.18		
(162 days)	Eggs yield (hens/group/period)	65118	64274	64081	62895		
	Feed Conversion Rate (g feed/egg)	126.29	132.37	134.38	141.65		
	Group average size (hens)	411	413	416.5	415.5		
46-65 weeks	Feed intake (kg/group/period)	6444	6546	6637	6728		
(140 days)	Average feed intake (g/hen/day)	111.99	113.21	113.82	115.66		
	Eggs yield (hens/group/period)	43993	43422	43294	42480		
	Feed Conversion Rate (g feed/egg)	146.48	150.75	153.30	158.38		

	Group average size (hens)	394	401	405.5	407
66-80 weeks	Feed intake (kg/group/period)	4954	5342	5391	5795
(105 days)	Average feed intake (g/hen/day)	119.74	126.87	126.61	135.60
(105 days)	Eggs yield (hens/group/period)	25897	25560	25477	25005
	Feed Conversion Rate (g feed/egg)	191.29	208.99	211.59	231.75
	Group average size (hens)	408	415	415	416.5
20-80 weeks	Feed intake (kg/group/period)	19622	20396	20639	21432
(427 days)	Average feed intake (g/hen/day)	112.63	115.10	116.47	120.51
(427 days)	Eggs yield (hens/group/period)	135008	133256	132852	130380
	Feed Conversion Rate (g feed/egg)	145.34	153.06	155.35	164.38

4. Flock looses. This parameter reached 0.23% at Lc and L₂exp and 0.46% at L₁exp and L₃exp, at the end of the 20th week of life, being caused by transportation and acclimatization stress and also by the hierarchic social fights. Then, looses significantly decreased, even leading to the lack of mortality, excepting during the cold season (36-41 weeks), when mortality reached 0.23÷0.47%/week or during the warm one (July-August), when mortality reached 0.24÷0.49%/week, because the outer environment temperature influenced the microclimate of the hall which was not endorsed with climate control system. Over the whole period flock looses values were found different between groups, depending on the applied technology. Thus, the lowest value (7.46%) was observed in L₃exp group, whose hens beneficiated of movement freedom all over the compartment. Then, next ascending values were calculated for L₂exp group (1000cm² coop floor/hen)-8.22% mortality, for L₁exp group (600cm² coop floor/hen)-9.57% mortality and for the control one-11.66%.

5. Proportion of eggs presenting morphologic anomalies. Broken eggshells highly occurred during laying beginning $(0.60\div0.99\%)$, followed then by other anomalies, such as: shell less eggs $(0.15\div0.22\%)$, malformed shells $(0.16\div0.18\%)$, twin yolks eggs $(0.06\div0.08\%)$ and also the eggs without yolk $(0.02\div0.04\%)$. During laying peak the proportion of broken shell eggs decreased $(0.31\div0.72\%)$, but also increased the malformed shells proportion $(0.33\div0.35\%)$, the same situation occurring also during the plateau stage $(0.50\div0.81\%)$ eggs with broken shell and $0.39\div0.41\%$ eggs with malformed shell). When hens approached the end of the laying period, most of the eggs with anomalies presented broken shells $(1.18\div1.59\%)$, then malformed shells $(0.62\div0.65\%)$ and shell less eggs $(0.27\div0.28\%)$.

6. Eggs weight (*tab. 4*). The weight of the eggs issued from all four groups was slightly similar during laying onset $(46.78 \div 47.01 \text{ g})$, during peak $(59.96 \div 60.17 \text{ g})$, plateau $(62.91 \div 63.04 \text{ g})$ and even when laying period ended $(68.24 \div 68.51 \text{ g})$.

Table 4

Control period	Statistical	Experimental group					
Control period	estimators	Lc	L1exp	L ₂ exp	L ₃ exp		
	$\overline{X} \pm s_{\overline{x}}$ (g)	46.98±1.30	46.83±1.26	47.01±1.45	46.78±1.28		
	S	7.15	6.92	7.95	7.05		
Laying onset	V%	15.21	14.78	16.92	15.03		
(20 th week)	Differences significance	Lc vs L1: F=0.87 Lc vs L2: F=0.56 Lc vs L3: F=1.14	<f5%=4.006 ns<="" td=""><td colspan="3">L1 vs L2: F=1.15<f5%=4.006 ns<br="">L1 vs L3: F=0.92<f5%=4.006 ns<br="">L2 vs L3: F=1.57<f5%=4.006 ns<="" td=""></f5%=4.006></f5%=4.006></f5%=4.006></td></f5%=4.006>	L1 vs L2: F=1.15 <f5%=4.006 ns<br="">L1 vs L3: F=0.92<f5%=4.006 ns<br="">L2 vs L3: F=1.57<f5%=4.006 ns<="" td=""></f5%=4.006></f5%=4.006></f5%=4.006>			
	$\overline{X} \pm s_{\overline{x}}$ (g)	60.17±1.07	60.09±1.05	59.96±0.93	60.12±1.00		
	S	5.88	5.76	5.07	5.50		
Laying peak	V%	9.77	9.56	8.45	9.15		
(28 th week)	Differences significance	Lc vs L1: F=0.46 <f5%=4.006 ns<br="">Lc vs L2: F=1.12<f5%=4.006 ns<br="">Lc vs L3: F=0.31<f5%=4.006 ns<="" td=""><td colspan="2">L1 vs L2: F=0.98<f5%=4.006 ns<br="">L1 vs L3: F=0.14<f5%=4.006 ns<br="">L2 vs L3: F=0.37<f5%=4.006 ns<="" td=""></f5%=4.006></f5%=4.006></f5%=4.006></td></f5%=4.006></f5%=4.006></f5%=4.006>		L1 vs L2: F=0.98 <f5%=4.006 ns<br="">L1 vs L3: F=0.14<f5%=4.006 ns<br="">L2 vs L3: F=0.37<f5%=4.006 ns<="" td=""></f5%=4.006></f5%=4.006></f5%=4.006>			
Laying plateau (37 th week)	$\overline{X} \pm s_{\overline{x}}$ (g)	62.99±0.94	63.04±0.99	62.91±0.94	63.03±0.86		
(37 week)	S	5.13	5.42	5.15	4.73		

Eggs weight (n=30)

	V%	8.15	8.59	8.31	7.62	
	Differences significance	Lc vs L1: F=0.81 Lc vs L2: F=0.89 Lc vs L3: F=0.80	<f5%=4.006 ns<="" td=""><td colspan="3">L1 vs L2: F=1.17<f5%=4.006 ns<br="">L1 vs L3: F=0.14<f5%=4.006 ns<br="">L2 vs L3: F=1.11<f5%=4.006 ns<="" td=""></f5%=4.006></f5%=4.006></f5%=4.006></td></f5%=4.006>	L1 vs L2: F=1.17 <f5%=4.006 ns<br="">L1 vs L3: F=0.14<f5%=4.006 ns<br="">L2 vs L3: F=1.11<f5%=4.006 ns<="" td=""></f5%=4.006></f5%=4.006></f5%=4.006>		
	$\overline{X} \pm s_{\overline{x}}$ (g)	68.51±1.56	68.24±1.63	68.37±1.61	68.50±1.76	
	S	8.57	8.95	8.83	9.66	
Laying end	V%	12.51	13.08	12.89	14.11	
(80 th week)	Differences significance	Lc vs L1: F=1.11 Lc vs L2: F=0.57 Lc vs L3: F=0.05	<f5%=4.006 ns<="" td=""><td colspan="3">L1 vs L2: F=1.08<f5%=4.006 ns<br="">L1 vs L3: F=1.12<f5%=4.006 ns<br="">L2 vs L3: F=0.77<f5%=4.006 ns<="" td=""></f5%=4.006></f5%=4.006></f5%=4.006></td></f5%=4.006>	L1 vs L2: F=1.08 <f5%=4.006 ns<br="">L1 vs L3: F=1.12<f5%=4.006 ns<br="">L2 vs L3: F=0.77<f5%=4.006 ns<="" td=""></f5%=4.006></f5%=4.006></f5%=4.006>		

7. Shell thickness. The lowest values of the eggshell thickness were observed at the eggs provided by those hens having the best laying intensity (Lc) $(0.354 \div 0.440 \text{ mm})$, while those birds with the lowest eggs yield (L₃exp), presented the thickest shell $(0.369 \div 0.448 \text{ mm})$.

8. Egg breaking strength (*tab. 5*). The data we acquired suggest that the best strength of the eggshell was observed during laying onset with different values for each group: 0.340 kg f/cm^3 -Lc; 0.342 kgf/cm^3-L_1exp; 0.343 kgf/cm^3-L_2exp and 0.348 kgf/cm^3-L_3exp. During laying peak, shell stiffness varied between 0.330 kgf/cm³ (Lc) and 0.339 kgf/cm³ (L_3exp), while during plateau stage, it reached values between 0.329 kgf/cm³ (Lc) and 0.337 kgf/cm³ (L_3exp). The worst results for the eggshell breaking strength were noticed when laying ceased, reaching thus: 0.325 kgf/cm³ in Lc; 0.326 kgf in L₁exp; 0.327 kgf in L₂exp and L₃exp. Table 5

Control	Statistical estimators		Experime	ntal group		
period		L_{c}	Lıexp	L ₂ exp	L ₃ exp	
	$\overline{X} \pm \mathbf{s}_{\overline{x}} (\text{kg f/cm}^2)$	0.340±0.008	0.342±0.010	0.343±0.009	0.348±0.009	
	S	0.042	0.057	0.047	0.051	
Laying onset	V%	12.51	16.59	13.80	14.79	
(20 th week)	Differences	Lc vs L1: F=0.31	<f5%=4.006 ns<="" td=""><td>L1 vs L2: F=0.16</td><td>5<f5%=4.006 ns<="" td=""></f5%=4.006></td></f5%=4.006>	L1 vs L2: F=0.16	5 <f5%=4.006 ns<="" td=""></f5%=4.006>	
	significance	Lc vs L2: F=0.45	5 <f5%=4.006 ns<="" td=""><td>L1 vs L3: F=0.82</td><td>2<f5%=4.006 ns<="" td=""></f5%=4.006></td></f5%=4.006>	L1 vs L3: F=0.82	2 <f5%=4.006 ns<="" td=""></f5%=4.006>	
		Lc vs L3: F=1.21	<f5%=4.006 ns<="" td=""><td>L2 vs L3: F=0.74</td><td>4<f5%=4.006 ns<="" td=""></f5%=4.006></td></f5%=4.006>	L2 vs L3: F=0.74	4 <f5%=4.006 ns<="" td=""></f5%=4.006>	
	$\overline{X} \pm \mathbf{s}_{\overline{x}} (\text{kg f/cm}^2)$	0.330±0.007	0.331±0.008	0.332±0.007	0.339±0.006	
	S	0.036	0.042	0.037	0.035	
Laying peak	V%	11.49	12.78	11.06	10.52	
(28 th week)	Differences	Lc vs L1: F=0.16	5 <f5%=4.006 ns<="" td=""><td colspan="3">L1 vs L2: F=0.15<f5%=4.006 ns<="" td=""></f5%=4.006></td></f5%=4.006>	L1 vs L2: F=0.15 <f5%=4.006 ns<="" td=""></f5%=4.006>		
	significance	Lc vs L2: F=0.32	2 <f5%=4.006 ns<="" td=""><td colspan="3">L1 vs L3: F=1.28<f5%=4.006 ns<="" td=""></f5%=4.006></td></f5%=4.006>	L1 vs L3: F=1.28 <f5%=4.006 ns<="" td=""></f5%=4.006>		
		Lc vs L3: F=1.35	5 <f5%=4.006 ns<="" td=""><td colspan="3">L2 vs L3: F=1.12<f5%=4.006 ns<="" td=""></f5%=4.006></td></f5%=4.006>	L2 vs L3: F=1.12 <f5%=4.006 ns<="" td=""></f5%=4.006>		
	$\overline{X} \pm s_{\overline{x}} (\text{kg f/cm}^2)$	0.329 ± 0.008	0.330±0.006	0.331±0.007	0.337±0.006	
Laying	S	0.042	0.035	0.038	0.036	
plateau	V%	12.89	10.62	11.41	10.89	
(37 th week)	Differences	Lc vs L1: F=0.14	l <f5%=4.006 ns<="" td=""><td colspan="3">L1 vs L2: F=0.15<f5%=4.006 ns<="" td=""></f5%=4.006></td></f5%=4.006>	L1 vs L2: F=0.15 <f5%=4.006 ns<="" td=""></f5%=4.006>		
	significance	Lc vs L2: F=0.29	9 <f5%=4.006 ns<="" td=""><td colspan="3">L1 vs L3: F=1.05<f5%=4.006 ns<="" td=""></f5%=4.006></td></f5%=4.006>	L1 vs L3: F=1.05 <f5%=4.006 ns<="" td=""></f5%=4.006>		
		Lc vs L3: F=1.12	2 <f5%=4.006 ns<="" td=""><td>L2 vs L3: F=0.84</td><td>4<f5%=4.006 ns<="" td=""></f5%=4.006></td></f5%=4.006>	L2 vs L3: F=0.84	4 <f5%=4.006 ns<="" td=""></f5%=4.006>	
	$\overline{X} \pm s_{\overline{x}} (\text{kg f/cm}^2)$	0.325±0.008	0.326±0.009	0.327±0.009	0.337±0.008	
	S	0.045	0.052	0.048	0.045	
Laying end	V%	13.98	15.89	14.73	13.74	
(80 th week)	Differences	Lc vs L1: F=0.15	5 <f5%=4.006 ns<="" td=""><td colspan="3">L1 vs L2: F=0.15<f5%=4.006 ns<="" td=""></f5%=4.006></td></f5%=4.006>	L1 vs L2: F=0.15 <f5%=4.006 ns<="" td=""></f5%=4.006>		
	significance	Lc vs L2: F=0.31	<f5%=4.006 ns<="" td=""><td>L1 vs L3: F=1.65</td><td>5<f5%=4.006 ns<="" td=""></f5%=4.006></td></f5%=4.006>	L1 vs L3: F=1.65	5 <f5%=4.006 ns<="" td=""></f5%=4.006>	
		Lc vs L3: F=1.95	5 <f5%=4.006 ns<="" td=""><td>L2 vs L3: F=1.50</td><td>)<f5%=4.006 ns<="" td=""></f5%=4.006></td></f5%=4.006>	L2 vs L3: F=1.50) <f5%=4.006 ns<="" td=""></f5%=4.006>	

Eggshell breaking strength (n=30)

9. Microbial shell load (*tab. 6*). During the laying beginning (20^{th} week), microbial shell load reached 112.78±3.906 germs/cm² at the Lc, 110.4±3.671 germs/cm² at L₁exp, 106.31±3.418 germs/cm² at L₂exp and also 148.62±6.097 germs/cm² at the L₃exp. Statistically speaking, significant differences occurred between L₂exp and Lc and L₁exp, while between L₃exp and the other groups (Lc, L₁exp and L₂exp), the differences proved to be high significant.

Table 6

Germs load on the eggshell (n=30)

Control	Statistical estimators		Experin	nental group		
period	Statistical estimators	L _c	Lıexp	L ₂ exp	L ₃ exp	
-	$\overline{X} \pm s_{\overline{x}} \text{ (germs/cm}^2)$	112.78±3.906	110.49±3.671	106.31±3.418	148.62±6.097	
Laying	S	21.40	20.12	18.73	33.41	
onset	V%	18.98	18.21	17.62	22.48	
(20 th week)	Differences significance	Lc vs L1: F=2.15 <f5% Lc vs L2: F=6.42<f5% Lc vs L3: F=27.7<f0.< td=""><td>6=4.006 *</td><td>L1 vs L2: F=4.28<f59 L1 vs L3: F=29.31<f0 L2 vs L3: F=33.49<f0< td=""><td>0.1%=12.12 ***</td></f0<></f0 </f59 </td></f0.<></f5% </f5% 	6=4.006 *	L1 vs L2: F=4.28 <f59 L1 vs L3: F=29.31<f0 L2 vs L3: F=33.49<f0< td=""><td>0.1%=12.12 ***</td></f0<></f0 </f59 	0.1%=12.12 ***	
	$\overline{X} \pm s_{\overline{x}} \text{ (germs/cm}^2)$	125.96±3.721	124.31±3.471	120.14±3.372	187.56±8.663	
Laying	S	20.39	19.02	18.48	47.47	
peak	V%	16.19	15.30	15.38	25.31	
(28 th week)	Differences significance	Lc vs L1: F=1.08 <f5% Lc vs L2: F=5.40<f5% Lc vs L3: F=56.34<f0< td=""><td>6=4.006 *</td><td>L1 vs L2: F=4.28<f59 L1 vs L3: F=57.41<f0 L2 vs L3: F=61.69<f0< td=""><td colspan="2">F0.1%=12.12 ***</td></f0<></f0 </f59 </td></f0<></f5% </f5% 	6=4.006 *	L1 vs L2: F=4.28 <f59 L1 vs L3: F=57.41<f0 L2 vs L3: F=61.69<f0< td=""><td colspan="2">F0.1%=12.12 ***</td></f0<></f0 </f59 	F0.1%=12.12 ***	
	$\overline{X} \pm s_{\overline{x}} \text{ (germs/cm}^2)$	139.23±4.662	138.07±4.439	134.98±4.441	221.17±10.836	
Laying	S	25.55	24.33	24.34	59.38	
plateau	V%	18.35	17.62	18.03	26.85	
(37 th week)	Differences significance	Lc vs L1: F=1.07 <f5% Lc vs L2: F=5.35<f5% Lc vs L3: F=77.74<f0< td=""><td>6=4.006 *</td><td>L1 vs L2: F=4.29<f59 L1 vs L3: F=78.81<f0 L2 vs L3: F=83.05<f0< td=""><td>0.1%=12.12 ***</td></f0<></f0 </f59 </td></f0<></f5% </f5% 	6=4.006 *	L1 vs L2: F=4.29 <f59 L1 vs L3: F=78.81<f0 L2 vs L3: F=83.05<f0< td=""><td>0.1%=12.12 ***</td></f0<></f0 </f59 	0.1%=12.12 ***	
	$\overline{X} \pm s_{\overline{x}}$ (germs/cm ²)	152.61±4.957	150.11±5.317	146.61±4.981	258.94±13.991	
	S	27.16	29.14	27.29	76.67	
Laying end	V%	17.80	19.41	18.62	29.61	
(80 th week)	Differences significance	Lc vs L1: F=2.16 <f59 Lc vs L2: F=6.48<f59 Lc vs L3: F=104.48<f< td=""><td>6=4.006 *</td><td>L1 vs L2: F=4.32<f59 L1 vs L3: F=106.64<f L2 vs L3: F=110.96<f< td=""><td>0.1%=12.12 ***</td></f<></f </f59 </td></f<></f59 </f59 	6=4.006 *	L1 vs L2: F=4.32 <f59 L1 vs L3: F=106.64<f L2 vs L3: F=110.96<f< td=""><td>0.1%=12.12 ***</td></f<></f </f59 	0.1%=12.12 ***	

During laying peak, (28^{th} week), germs amount on each cm² of shell increased, the values varying between 120.14±3.372 (L₂exp group) and 187.56±8.663 (L₃exp group). Statistical analysis revealed the same situation (significant differences between L₂exp and Lc, L₁exp groups, respectively high significant between L₃exp and the other groups). The eggs harvested during the plateau stage (37^{th} week) had higher germs amounts that varied within the 134.98±4.441/cm² (L₂exp) and 221.17±10.836/cm² (L₃exp) limits. Statistically, the differences were found similar to those recorded during the previously control periods. The highest levels of microbial contamination have been noticed when laying almost ceased (80^{th} week), meaning: 152.61±4.957 germs/cm² shell at the L₃exp group. Significant differences occurred between L₂exp and Lc, L₁exp groups and also high significant ones between L₃exp and Lc, L₁exp groups.

CONCLUSIONS

Several conclusions issued from the researches:

Body weight dynamics was found in accordance with the "Lohmann Brown" standard weight curve. However, there were some differences between groups, given by the presence/absence of the movement freedom. The optimized management applied to the groups without free access in the hall (L₁exp, L₂exp and Lc) provides to the fowl the opportunity to express the yielding potential, *average yields* of 316.32÷325.05 eggs/hen being achieved, as compared to the average value noticed for the L₃exp group (311.34 eggs/hen). Egg production values influenced *feed intake*, the best FCR value being calculated for the Lc (134.34g/egg) while the less competitive (164.38g/egg) was observed in the L₃exp. *Mortality*

rate was 0.76-4.20% lower at the $L_3 exp$ (free access in rearing compartment), as compared to the other groups, which provided different rearing floor surface in the coops.

Eggs weight was ascending from the laying beginning toward its end, without the occurrence of statistic significance between groups. Shell thickens was reversal correlated to the laying intensity, being higher $(0.369 \div 0.448 \text{mm})$ at the eggs issued from the group with the poorest yield (L₃exp); consequently, the best values for the *shell breaking strength* $(0.337 \div 0.348 \text{ kg f/cm}^2)$ were measured within the same group. Meanwhile, higher germs load was noticed in the same group (L₃exp), respectively 39.9-69.7% more than the other groups, because the hens spend more time on the layer between battery lines or laid straight on it.

Basing on those previously specified aspects, we still recommend the maintenance of the superintensive rearing system in Romania, at least for a few years ahead, using BP-3 batteries with modified coops, in order to allow the accommodation of 5 hens/each coop of 3000cm^2 (600cm²/hen).

BIBLIOGRAPHY

- 1. Appleby, M.C., 1998-Modified cage: effects of group size and space allowance on brown laying hens. Journal Application Poultry Researches, no. 7, 152-161.
- 2. Bareham, J.R., 1996-A comparation of the behavior and production of laying hens in experimental and conventional battery cages. Appl. Anim. Behav. Sci., no. 2, 291-203.
- 3. Leyendecker, M. and all, 2002-Mortality and production traits of laying hens kept in battery cages, furnished cages and an aviary housing sistem. Arch. fur Geflugelkunde, September, 144-151.
- 4. Usturoi, M.G., Boișteanu, P.C., Radu-Rusu, R.M., Pop, Cecilia, Pop, I.M., 2008-Studies concerning the influence of the alternative rearing systems with horizontal disposing onto the egg yield of the specialized laying hybrids. 1st Mediterranean Summit of WPSA, Book of Proceedings, pg. 636-641. ISBN 978-960-12-1686-7.